SimpleBrothel / app.py
K00B404's picture
Update app.py
cdf9332 verified
raw
history blame
2.24 kB
import gradio as gr
from all_models import models
from externalmod import gr_Interface_load
import asyncio
import os
from datetime import datetime
# Load the models
HF_TOKEN = os.getenv("HF_TOKEN", None)
from PIL import Image
import io
def load_models(models):
loaded_models = {}
for model in models:
try:
loaded_models[model] = gr_Interface_load(f'models/{model}', hf_token=HF_TOKEN)
except Exception as e:
print(f"Error loading {model}: {e}")
return loaded_models
models_load = load_models(models)
# Generate image function
async def infer(model_str, prompt, seed=-1):
task = asyncio.create_task(
asyncio.to_thread(models_load[model_str].fn, prompt=prompt, seed=seed, token=HF_TOKEN)
)
await asyncio.sleep(0)
result = await asyncio.wait_for(task, timeout=600)
return result
def generate_image(model_name, prompt, seed):
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
try:
# Get the result from inference
result = loop.run_until_complete(infer(model_name, prompt, seed))
if isinstance(result, tuple):
# Assuming the first element is the image data
result = result[0]
if isinstance(result, bytes):
# Convert bytes to PIL Image if necessary
return Image.open(io.BytesIO(result))
elif isinstance(result, Image.Image):
return result
else:
raise ValueError(f"Unexpected output type: {type(result)}")
finally:
loop.close()
# Interface
with gr.Blocks() as demo:
with gr.Column():
model_choice = gr.Dropdown(
choices=models, label="Select Model", value=models[0]
)
prompt_input = gr.Textbox(label="Enter your prompt")
seed_input = gr.Slider(
label="Seed", minimum=-1, maximum=100000, step=1, value=-1
)
generate_button = gr.Button("Generate Image")
output_image = gr.Image(label="Generated Image", show_download_button=True)
generate_button.click(
fn=generate_image,
inputs=[model_choice, prompt_input, seed_input],
outputs=[output_image],
)
demo.launch()