Spaces:
Running
on
Zero
Running
on
Zero
Kohaku-Blueleaf
commited on
Commit
·
26d4aa7
1
Parent(s):
17c7547
init
Browse files- .gitignore +169 -0
- LICENSE +201 -0
- NOTICE +15 -0
- app.py +392 -0
- diffusers_helper/attention.py +86 -0
- diffusers_helper/cat_cond.py +24 -0
- diffusers_helper/code_cond.py +34 -0
- diffusers_helper/k_diffusion.py +145 -0
- diffusers_helper/utils.py +136 -0
- requirements.txt +15 -0
.gitignore
ADDED
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
hf_token.txt
|
2 |
+
hf_download/
|
3 |
+
results/
|
4 |
+
*.csv
|
5 |
+
*.onnx
|
6 |
+
|
7 |
+
# Byte-compiled / optimized / DLL files
|
8 |
+
__pycache__/
|
9 |
+
*.py[cod]
|
10 |
+
*$py.class
|
11 |
+
|
12 |
+
# C extensions
|
13 |
+
*.so
|
14 |
+
|
15 |
+
# Distribution / packaging
|
16 |
+
.Python
|
17 |
+
build/
|
18 |
+
develop-eggs/
|
19 |
+
dist/
|
20 |
+
downloads/
|
21 |
+
eggs/
|
22 |
+
.eggs/
|
23 |
+
lib/
|
24 |
+
lib64/
|
25 |
+
parts/
|
26 |
+
sdist/
|
27 |
+
var/
|
28 |
+
wheels/
|
29 |
+
share/python-wheels/
|
30 |
+
*.egg-info/
|
31 |
+
.installed.cfg
|
32 |
+
*.egg
|
33 |
+
MANIFEST
|
34 |
+
|
35 |
+
# PyInstaller
|
36 |
+
# Usually these files are written by a python script from a template
|
37 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
38 |
+
*.manifest
|
39 |
+
*.spec
|
40 |
+
|
41 |
+
# Installer logs
|
42 |
+
pip-log.txt
|
43 |
+
pip-delete-this-directory.txt
|
44 |
+
|
45 |
+
# Unit test / coverage reports
|
46 |
+
htmlcov/
|
47 |
+
.tox/
|
48 |
+
.nox/
|
49 |
+
.coverage
|
50 |
+
.coverage.*
|
51 |
+
.cache
|
52 |
+
nosetests.xml
|
53 |
+
coverage.xml
|
54 |
+
*.cover
|
55 |
+
*.py,cover
|
56 |
+
.hypothesis/
|
57 |
+
.pytest_cache/
|
58 |
+
cover/
|
59 |
+
|
60 |
+
# Translations
|
61 |
+
*.mo
|
62 |
+
*.pot
|
63 |
+
|
64 |
+
# Django stuff:
|
65 |
+
*.log
|
66 |
+
local_settings.py
|
67 |
+
db.sqlite3
|
68 |
+
db.sqlite3-journal
|
69 |
+
|
70 |
+
# Flask stuff:
|
71 |
+
instance/
|
72 |
+
.webassets-cache
|
73 |
+
|
74 |
+
# Scrapy stuff:
|
75 |
+
.scrapy
|
76 |
+
|
77 |
+
# Sphinx documentation
|
78 |
+
docs/_build/
|
79 |
+
|
80 |
+
# PyBuilder
|
81 |
+
.pybuilder/
|
82 |
+
target/
|
83 |
+
|
84 |
+
# Jupyter Notebook
|
85 |
+
.ipynb_checkpoints
|
86 |
+
|
87 |
+
# IPython
|
88 |
+
profile_default/
|
89 |
+
ipython_config.py
|
90 |
+
|
91 |
+
# pyenv
|
92 |
+
# For a library or package, you might want to ignore these files since the code is
|
93 |
+
# intended to run in multiple environments; otherwise, check them in:
|
94 |
+
# .python-version
|
95 |
+
|
96 |
+
# pipenv
|
97 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
98 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
99 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
100 |
+
# install all needed dependencies.
|
101 |
+
#Pipfile.lock
|
102 |
+
|
103 |
+
# poetry
|
104 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
105 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
106 |
+
# commonly ignored for libraries.
|
107 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
108 |
+
#poetry.lock
|
109 |
+
|
110 |
+
# pdm
|
111 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
112 |
+
#pdm.lock
|
113 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
114 |
+
# in version control.
|
115 |
+
# https://pdm.fming.dev/latest/usage/project/#working-with-version-control
|
116 |
+
.pdm.toml
|
117 |
+
.pdm-python
|
118 |
+
.pdm-build/
|
119 |
+
|
120 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
121 |
+
__pypackages__/
|
122 |
+
|
123 |
+
# Celery stuff
|
124 |
+
celerybeat-schedule
|
125 |
+
celerybeat.pid
|
126 |
+
|
127 |
+
# SageMath parsed files
|
128 |
+
*.sage.py
|
129 |
+
|
130 |
+
# Environments
|
131 |
+
.env
|
132 |
+
.venv
|
133 |
+
env/
|
134 |
+
venv/
|
135 |
+
venv*/
|
136 |
+
ENV/
|
137 |
+
env.bak/
|
138 |
+
venv.bak/
|
139 |
+
|
140 |
+
# Spyder project settings
|
141 |
+
.spyderproject
|
142 |
+
.spyproject
|
143 |
+
|
144 |
+
# Rope project settings
|
145 |
+
.ropeproject
|
146 |
+
|
147 |
+
# mkdocs documentation
|
148 |
+
/site
|
149 |
+
|
150 |
+
# mypy
|
151 |
+
.mypy_cache/
|
152 |
+
.dmypy.json
|
153 |
+
dmypy.json
|
154 |
+
|
155 |
+
# Pyre type checker
|
156 |
+
.pyre/
|
157 |
+
|
158 |
+
# pytype static type analyzer
|
159 |
+
.pytype/
|
160 |
+
|
161 |
+
# Cython debug symbols
|
162 |
+
cython_debug/
|
163 |
+
|
164 |
+
# PyCharm
|
165 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
166 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
167 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
168 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
169 |
+
.idea/
|
LICENSE
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Apache License
|
2 |
+
Version 2.0, January 2004
|
3 |
+
http://www.apache.org/licenses/
|
4 |
+
|
5 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
6 |
+
|
7 |
+
1. Definitions.
|
8 |
+
|
9 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
10 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
11 |
+
|
12 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
13 |
+
the copyright owner that is granting the License.
|
14 |
+
|
15 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
16 |
+
other entities that control, are controlled by, or are under common
|
17 |
+
control with that entity. For the purposes of this definition,
|
18 |
+
"control" means (i) the power, direct or indirect, to cause the
|
19 |
+
direction or management of such entity, whether by contract or
|
20 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
21 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
22 |
+
|
23 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
24 |
+
exercising permissions granted by this License.
|
25 |
+
|
26 |
+
"Source" form shall mean the preferred form for making modifications,
|
27 |
+
including but not limited to software source code, documentation
|
28 |
+
source, and configuration files.
|
29 |
+
|
30 |
+
"Object" form shall mean any form resulting from mechanical
|
31 |
+
transformation or translation of a Source form, including but
|
32 |
+
not limited to compiled object code, generated documentation,
|
33 |
+
and conversions to other media types.
|
34 |
+
|
35 |
+
"Work" shall mean the work of authorship, whether in Source or
|
36 |
+
Object form, made available under the License, as indicated by a
|
37 |
+
copyright notice that is included in or attached to the work
|
38 |
+
(an example is provided in the Appendix below).
|
39 |
+
|
40 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
41 |
+
form, that is based on (or derived from) the Work and for which the
|
42 |
+
editorial revisions, annotations, elaborations, or other modifications
|
43 |
+
represent, as a whole, an original work of authorship. For the purposes
|
44 |
+
of this License, Derivative Works shall not include works that remain
|
45 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
46 |
+
the Work and Derivative Works thereof.
|
47 |
+
|
48 |
+
"Contribution" shall mean any work of authorship, including
|
49 |
+
the original version of the Work and any modifications or additions
|
50 |
+
to that Work or Derivative Works thereof, that is intentionally
|
51 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
52 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
53 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
54 |
+
means any form of electronic, verbal, or written communication sent
|
55 |
+
to the Licensor or its representatives, including but not limited to
|
56 |
+
communication on electronic mailing lists, source code control systems,
|
57 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
58 |
+
Licensor for the purpose of discussing and improving the Work, but
|
59 |
+
excluding communication that is conspicuously marked or otherwise
|
60 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
61 |
+
|
62 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
63 |
+
on behalf of whom a Contribution has been received by Licensor and
|
64 |
+
subsequently incorporated within the Work.
|
65 |
+
|
66 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
67 |
+
this License, each Contributor hereby grants to You a perpetual,
|
68 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
69 |
+
copyright license to reproduce, prepare Derivative Works of,
|
70 |
+
publicly display, publicly perform, sublicense, and distribute the
|
71 |
+
Work and such Derivative Works in Source or Object form.
|
72 |
+
|
73 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
74 |
+
this License, each Contributor hereby grants to You a perpetual,
|
75 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
76 |
+
(except as stated in this section) patent license to make, have made,
|
77 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
78 |
+
where such license applies only to those patent claims licensable
|
79 |
+
by such Contributor that are necessarily infringed by their
|
80 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
81 |
+
with the Work to which such Contribution(s) was submitted. If You
|
82 |
+
institute patent litigation against any entity (including a
|
83 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
84 |
+
or a Contribution incorporated within the Work constitutes direct
|
85 |
+
or contributory patent infringement, then any patent licenses
|
86 |
+
granted to You under this License for that Work shall terminate
|
87 |
+
as of the date such litigation is filed.
|
88 |
+
|
89 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
90 |
+
Work or Derivative Works thereof in any medium, with or without
|
91 |
+
modifications, and in Source or Object form, provided that You
|
92 |
+
meet the following conditions:
|
93 |
+
|
94 |
+
(a) You must give any other recipients of the Work or
|
95 |
+
Derivative Works a copy of this License; and
|
96 |
+
|
97 |
+
(b) You must cause any modified files to carry prominent notices
|
98 |
+
stating that You changed the files; and
|
99 |
+
|
100 |
+
(c) You must retain, in the Source form of any Derivative Works
|
101 |
+
that You distribute, all copyright, patent, trademark, and
|
102 |
+
attribution notices from the Source form of the Work,
|
103 |
+
excluding those notices that do not pertain to any part of
|
104 |
+
the Derivative Works; and
|
105 |
+
|
106 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
107 |
+
distribution, then any Derivative Works that You distribute must
|
108 |
+
include a readable copy of the attribution notices contained
|
109 |
+
within such NOTICE file, excluding those notices that do not
|
110 |
+
pertain to any part of the Derivative Works, in at least one
|
111 |
+
of the following places: within a NOTICE text file distributed
|
112 |
+
as part of the Derivative Works; within the Source form or
|
113 |
+
documentation, if provided along with the Derivative Works; or,
|
114 |
+
within a display generated by the Derivative Works, if and
|
115 |
+
wherever such third-party notices normally appear. The contents
|
116 |
+
of the NOTICE file are for informational purposes only and
|
117 |
+
do not modify the License. You may add Your own attribution
|
118 |
+
notices within Derivative Works that You distribute, alongside
|
119 |
+
or as an addendum to the NOTICE text from the Work, provided
|
120 |
+
that such additional attribution notices cannot be construed
|
121 |
+
as modifying the License.
|
122 |
+
|
123 |
+
You may add Your own copyright statement to Your modifications and
|
124 |
+
may provide additional or different license terms and conditions
|
125 |
+
for use, reproduction, or distribution of Your modifications, or
|
126 |
+
for any such Derivative Works as a whole, provided Your use,
|
127 |
+
reproduction, and distribution of the Work otherwise complies with
|
128 |
+
the conditions stated in this License.
|
129 |
+
|
130 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
131 |
+
any Contribution intentionally submitted for inclusion in the Work
|
132 |
+
by You to the Licensor shall be under the terms and conditions of
|
133 |
+
this License, without any additional terms or conditions.
|
134 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
135 |
+
the terms of any separate license agreement you may have executed
|
136 |
+
with Licensor regarding such Contributions.
|
137 |
+
|
138 |
+
6. Trademarks. This License does not grant permission to use the trade
|
139 |
+
names, trademarks, service marks, or product names of the Licensor,
|
140 |
+
except as required for reasonable and customary use in describing the
|
141 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
142 |
+
|
143 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
144 |
+
agreed to in writing, Licensor provides the Work (and each
|
145 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
146 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
147 |
+
implied, including, without limitation, any warranties or conditions
|
148 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
149 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
150 |
+
appropriateness of using or redistributing the Work and assume any
|
151 |
+
risks associated with Your exercise of permissions under this License.
|
152 |
+
|
153 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
154 |
+
whether in tort (including negligence), contract, or otherwise,
|
155 |
+
unless required by applicable law (such as deliberate and grossly
|
156 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
157 |
+
liable to You for damages, including any direct, indirect, special,
|
158 |
+
incidental, or consequential damages of any character arising as a
|
159 |
+
result of this License or out of the use or inability to use the
|
160 |
+
Work (including but not limited to damages for loss of goodwill,
|
161 |
+
work stoppage, computer failure or malfunction, or any and all
|
162 |
+
other commercial damages or losses), even if such Contributor
|
163 |
+
has been advised of the possibility of such damages.
|
164 |
+
|
165 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
166 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
167 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
168 |
+
or other liability obligations and/or rights consistent with this
|
169 |
+
License. However, in accepting such obligations, You may act only
|
170 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
171 |
+
of any other Contributor, and only if You agree to indemnify,
|
172 |
+
defend, and hold each Contributor harmless for any liability
|
173 |
+
incurred by, or claims asserted against, such Contributor by reason
|
174 |
+
of your accepting any such warranty or additional liability.
|
175 |
+
|
176 |
+
END OF TERMS AND CONDITIONS
|
177 |
+
|
178 |
+
APPENDIX: How to apply the Apache License to your work.
|
179 |
+
|
180 |
+
To apply the Apache License to your work, attach the following
|
181 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
182 |
+
replaced with your own identifying information. (Don't include
|
183 |
+
the brackets!) The text should be enclosed in the appropriate
|
184 |
+
comment syntax for the file format. We also recommend that a
|
185 |
+
file or class name and description of purpose be included on the
|
186 |
+
same "printed page" as the copyright notice for easier
|
187 |
+
identification within third-party archives.
|
188 |
+
|
189 |
+
Copyright [yyyy] [name of copyright owner]
|
190 |
+
|
191 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
192 |
+
you may not use this file except in compliance with the License.
|
193 |
+
You may obtain a copy of the License at
|
194 |
+
|
195 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
196 |
+
|
197 |
+
Unless required by applicable law or agreed to in writing, software
|
198 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
199 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
200 |
+
See the License for the specific language governing permissions and
|
201 |
+
limitations under the License.
|
NOTICE
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
NOTICE
|
2 |
+
|
3 |
+
This repository contains files that have been copied or modified from other sources:
|
4 |
+
|
5 |
+
1. diffusers_helper/*.py # expect diffusers_helper/attention.py
|
6 |
+
Source: https://github.com/lllyasviel/Paints-UNDO/tree/main/diffusers_helper
|
7 |
+
License: Apache-2.0
|
8 |
+
Modifications: No
|
9 |
+
|
10 |
+
2. app.py
|
11 |
+
Source: https://github.com/lllyasviel/Paints-UNDO/tree/main/gradio_app.py
|
12 |
+
License: Apache-2.0
|
13 |
+
Modifications: Modified UI for sketch gen only. Remove vid gen utils. Add clip concat utils.
|
14 |
+
|
15 |
+
Please see the individual files for their specific licensing terms.
|
app.py
ADDED
@@ -0,0 +1,392 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
Modified from https://github.com/lllyasviel/Paints-UNDO/blob/main/gradio_app.py
|
3 |
+
'''
|
4 |
+
import functools
|
5 |
+
|
6 |
+
import spaces
|
7 |
+
import gradio as gr
|
8 |
+
import numpy as np
|
9 |
+
import cv2
|
10 |
+
import torch
|
11 |
+
|
12 |
+
from PIL import Image
|
13 |
+
from diffusers import AutoencoderKL, UNet2DConditionModel
|
14 |
+
from diffusers.models.attention_processor import AttnProcessor2_0
|
15 |
+
from transformers import CLIPTextModel, CLIPTokenizer
|
16 |
+
from imgutils.metrics import lpips_difference
|
17 |
+
from imgutils.tagging import get_wd14_tags
|
18 |
+
|
19 |
+
from diffusers_helper.code_cond import unet_add_coded_conds
|
20 |
+
from diffusers_helper.cat_cond import unet_add_concat_conds
|
21 |
+
from diffusers_helper.k_diffusion import KDiffusionSampler
|
22 |
+
from diffusers_helper.attention import AttnProcessor2_0_xformers, XFORMERS_AVAIL
|
23 |
+
|
24 |
+
from lineart_models import MangaLineExtraction, LineartAnimeDetector, LineartDetector
|
25 |
+
|
26 |
+
|
27 |
+
def resize_and_center_crop(
|
28 |
+
image, target_width, target_height=None, interpolation=cv2.INTER_AREA
|
29 |
+
):
|
30 |
+
original_height, original_width = image.shape[:2]
|
31 |
+
if target_height is None:
|
32 |
+
aspect_ratio = original_width / original_height
|
33 |
+
target_pixel_count = target_width * target_width
|
34 |
+
target_height = (target_pixel_count / aspect_ratio) ** 0.5
|
35 |
+
target_width = target_height * aspect_ratio
|
36 |
+
target_height = int(target_height)
|
37 |
+
target_width = int(target_width)
|
38 |
+
print(
|
39 |
+
f"original_height={original_height}, "
|
40 |
+
f"original_width={original_width}, "
|
41 |
+
f"target_height={target_height}, "
|
42 |
+
f"target_width={target_width}"
|
43 |
+
)
|
44 |
+
k = max(target_height / original_height, target_width / original_width)
|
45 |
+
new_width = int(round(original_width * k))
|
46 |
+
new_height = int(round(original_height * k))
|
47 |
+
resized_image = cv2.resize(
|
48 |
+
image, (new_width, new_height), interpolation=interpolation
|
49 |
+
)
|
50 |
+
x_start = (new_width - target_width) // 2
|
51 |
+
y_start = (new_height - target_height) // 2
|
52 |
+
cropped_image = resized_image[
|
53 |
+
y_start : y_start + target_height, x_start : x_start + target_width
|
54 |
+
]
|
55 |
+
return cropped_image
|
56 |
+
|
57 |
+
|
58 |
+
class ModifiedUNet(UNet2DConditionModel):
|
59 |
+
@classmethod
|
60 |
+
def from_config(cls, *args, **kwargs):
|
61 |
+
m = super().from_config(*args, **kwargs)
|
62 |
+
unet_add_concat_conds(unet=m, new_channels=4)
|
63 |
+
unet_add_coded_conds(unet=m, added_number_count=1)
|
64 |
+
return m
|
65 |
+
|
66 |
+
|
67 |
+
DEVICE = "cuda"
|
68 |
+
torch._dynamo.config.cache_size_limit = 256
|
69 |
+
|
70 |
+
|
71 |
+
lineart_models = []
|
72 |
+
|
73 |
+
lineart_model = MangaLineExtraction("cuda", "./hf_download")
|
74 |
+
lineart_model.load_model()
|
75 |
+
lineart_model.model.to(device=DEVICE).eval()
|
76 |
+
lineart_models.append(lineart_model)
|
77 |
+
|
78 |
+
lineart_model = LineartAnimeDetector()
|
79 |
+
lineart_model.model.to(device=DEVICE).eval()
|
80 |
+
lineart_models.append(lineart_model)
|
81 |
+
|
82 |
+
lineart_model = LineartDetector()
|
83 |
+
lineart_model.model.to(device=DEVICE).eval()
|
84 |
+
lineart_models.append(lineart_model)
|
85 |
+
|
86 |
+
|
87 |
+
model_name = "lllyasviel/paints_undo_single_frame"
|
88 |
+
tokenizer: CLIPTokenizer = CLIPTokenizer.from_pretrained(
|
89 |
+
model_name, subfolder="tokenizer"
|
90 |
+
)
|
91 |
+
text_encoder: CLIPTextModel = (
|
92 |
+
CLIPTextModel.from_pretrained(
|
93 |
+
model_name,
|
94 |
+
subfolder="text_encoder",
|
95 |
+
)
|
96 |
+
.to(dtype=torch.float16, device=DEVICE)
|
97 |
+
.eval()
|
98 |
+
)
|
99 |
+
vae: AutoencoderKL = (
|
100 |
+
AutoencoderKL.from_pretrained(
|
101 |
+
model_name,
|
102 |
+
subfolder="vae",
|
103 |
+
)
|
104 |
+
.to(dtype=torch.bfloat16, device=DEVICE)
|
105 |
+
.eval()
|
106 |
+
)
|
107 |
+
unet: ModifiedUNet = (
|
108 |
+
ModifiedUNet.from_pretrained(
|
109 |
+
model_name,
|
110 |
+
subfolder="unet",
|
111 |
+
)
|
112 |
+
.to(dtype=torch.float16, device=DEVICE)
|
113 |
+
.eval()
|
114 |
+
)
|
115 |
+
|
116 |
+
if XFORMERS_AVAIL:
|
117 |
+
unet.set_attn_processor(AttnProcessor2_0_xformers())
|
118 |
+
vae.set_attn_processor(AttnProcessor2_0_xformers())
|
119 |
+
else:
|
120 |
+
unet.set_attn_processor(AttnProcessor2_0())
|
121 |
+
vae.set_attn_processor(AttnProcessor2_0())
|
122 |
+
|
123 |
+
# text_encoder = torch.compile(text_encoder, backend="eager", dynamic=True)
|
124 |
+
# vae = torch.compile(vae, backend="eager", dynamic=True)
|
125 |
+
# unet = torch.compile(unet, mode="reduce-overhead", dynamic=True)
|
126 |
+
# for model in lineart_models:
|
127 |
+
# model.model = torch.compile(model.model, backend="eager", dynamic=True)
|
128 |
+
k_sampler = KDiffusionSampler(
|
129 |
+
unet=unet,
|
130 |
+
timesteps=1000,
|
131 |
+
linear_start=0.00085,
|
132 |
+
linear_end=0.020,
|
133 |
+
linear=True,
|
134 |
+
)
|
135 |
+
|
136 |
+
|
137 |
+
@spaces.GPU
|
138 |
+
@torch.inference_mode()
|
139 |
+
def encode_cropped_prompt_77tokens(txt: str):
|
140 |
+
cond_ids = tokenizer(
|
141 |
+
txt,
|
142 |
+
padding="max_length",
|
143 |
+
max_length=tokenizer.model_max_length,
|
144 |
+
truncation=True,
|
145 |
+
return_tensors="pt",
|
146 |
+
).input_ids.to(device=text_encoder.device)
|
147 |
+
text_cond = text_encoder(cond_ids, attention_mask=None).last_hidden_state
|
148 |
+
return text_cond
|
149 |
+
|
150 |
+
|
151 |
+
@spaces.GPU
|
152 |
+
@torch.inference_mode()
|
153 |
+
def encode_cropped_prompt(txt: str, max_length=225):
|
154 |
+
cond_ids = tokenizer(
|
155 |
+
txt,
|
156 |
+
padding="max_length",
|
157 |
+
max_length=max_length + 2,
|
158 |
+
truncation=True,
|
159 |
+
return_tensors="pt",
|
160 |
+
).input_ids.to(device=text_encoder.device)
|
161 |
+
if max_length + 2 > tokenizer.model_max_length:
|
162 |
+
input_ids = cond_ids.squeeze(0)
|
163 |
+
id_list = list(range(1, max_length + 2 - tokenizer.model_max_length + 2, tokenizer.model_max_length - 2))
|
164 |
+
text_cond_list = []
|
165 |
+
for i in id_list:
|
166 |
+
ids_chunk = (
|
167 |
+
input_ids[0].unsqueeze(0),
|
168 |
+
input_ids[i : i + tokenizer.model_max_length - 2],
|
169 |
+
input_ids[-1].unsqueeze(0),
|
170 |
+
)
|
171 |
+
if torch.all(ids_chunk[1] == tokenizer.pad_token_id):
|
172 |
+
break
|
173 |
+
text_cond = text_encoder(torch.concat(ids_chunk).unsqueeze(0)).last_hidden_state
|
174 |
+
if text_cond_list == []:
|
175 |
+
text_cond_list.append(text_cond[:, :1])
|
176 |
+
text_cond_list.append(text_cond[:, 1:tokenizer.model_max_length - 1])
|
177 |
+
text_cond_list.append(text_cond[:, -1:])
|
178 |
+
text_cond = torch.concat(text_cond_list, dim=1)
|
179 |
+
else:
|
180 |
+
text_cond = text_encoder(
|
181 |
+
cond_ids, attention_mask=None
|
182 |
+
).last_hidden_state
|
183 |
+
return text_cond.flatten(0, 1).unsqueeze(0)
|
184 |
+
|
185 |
+
|
186 |
+
@spaces.GPU
|
187 |
+
@torch.inference_mode()
|
188 |
+
def pytorch2numpy(imgs):
|
189 |
+
results = []
|
190 |
+
for x in imgs:
|
191 |
+
y = x.movedim(0, -1)
|
192 |
+
y = y * 127.5 + 127.5
|
193 |
+
y = y.detach().float().cpu().numpy().clip(0, 255).astype(np.uint8)
|
194 |
+
results.append(y)
|
195 |
+
return results
|
196 |
+
|
197 |
+
|
198 |
+
@spaces.GPU
|
199 |
+
@torch.inference_mode()
|
200 |
+
def numpy2pytorch(imgs):
|
201 |
+
h = torch.from_numpy(np.stack(imgs, axis=0)).float() / 127.5 - 1.0
|
202 |
+
h = h.movedim(-1, 1)
|
203 |
+
return h
|
204 |
+
|
205 |
+
|
206 |
+
@spaces.GPU
|
207 |
+
@torch.inference_mode()
|
208 |
+
def interrogator_process(x):
|
209 |
+
img = Image.fromarray(x)
|
210 |
+
rating, features, chars = get_wd14_tags(img, general_threshold=0.25, no_underline=True)
|
211 |
+
result = ""
|
212 |
+
for char in chars:
|
213 |
+
result += char
|
214 |
+
result += ", "
|
215 |
+
for feature in features:
|
216 |
+
result += feature
|
217 |
+
result += ", "
|
218 |
+
result += max(rating, key=rating.get)
|
219 |
+
return result
|
220 |
+
|
221 |
+
|
222 |
+
@spaces.GPU
|
223 |
+
@torch.inference_mode()
|
224 |
+
def process(
|
225 |
+
input_fg,
|
226 |
+
prompt,
|
227 |
+
input_undo_steps,
|
228 |
+
image_width,
|
229 |
+
seed,
|
230 |
+
steps,
|
231 |
+
n_prompt,
|
232 |
+
cfg,
|
233 |
+
num_sets,
|
234 |
+
progress=gr.Progress(),
|
235 |
+
):
|
236 |
+
lineart_fg = input_fg
|
237 |
+
linearts = []
|
238 |
+
for model in lineart_models:
|
239 |
+
linearts.append(model(lineart_fg))
|
240 |
+
fg = resize_and_center_crop(input_fg, image_width)
|
241 |
+
for i, lineart in enumerate(linearts):
|
242 |
+
lineart = resize_and_center_crop(lineart, fg.shape[1], fg.shape[0])
|
243 |
+
linearts[i] = lineart
|
244 |
+
|
245 |
+
concat_conds = numpy2pytorch([fg]).to(device=vae.device, dtype=vae.dtype)
|
246 |
+
concat_conds = (
|
247 |
+
vae.encode(concat_conds).latent_dist.mode() * vae.config.scaling_factor
|
248 |
+
)
|
249 |
+
|
250 |
+
conds = encode_cropped_prompt(prompt)
|
251 |
+
unconds = encode_cropped_prompt_77tokens(n_prompt)
|
252 |
+
print(conds.shape, unconds.shape)
|
253 |
+
torch.cuda.empty_cache()
|
254 |
+
|
255 |
+
fs = torch.tensor(input_undo_steps).to(device=unet.device, dtype=torch.long)
|
256 |
+
initial_latents = torch.zeros_like(concat_conds)
|
257 |
+
concat_conds = concat_conds.to(device=unet.device, dtype=unet.dtype)
|
258 |
+
latents = []
|
259 |
+
rng = torch.Generator(device=DEVICE).manual_seed(int(seed))
|
260 |
+
latents = (
|
261 |
+
k_sampler(
|
262 |
+
initial_latent=initial_latents,
|
263 |
+
strength=1.0,
|
264 |
+
num_inference_steps=steps,
|
265 |
+
guidance_scale=cfg,
|
266 |
+
batch_size=len(input_undo_steps) * num_sets,
|
267 |
+
generator=rng,
|
268 |
+
prompt_embeds=conds,
|
269 |
+
negative_prompt_embeds=unconds,
|
270 |
+
cross_attention_kwargs={
|
271 |
+
"concat_conds": concat_conds,
|
272 |
+
"coded_conds": fs,
|
273 |
+
},
|
274 |
+
same_noise_in_batch=False,
|
275 |
+
progress_tqdm=functools.partial(
|
276 |
+
progress.tqdm, desc="Generating Key Frames"
|
277 |
+
),
|
278 |
+
).to(vae.dtype)
|
279 |
+
/ vae.config.scaling_factor
|
280 |
+
)
|
281 |
+
torch.cuda.empty_cache()
|
282 |
+
|
283 |
+
pixels = torch.concat(
|
284 |
+
[vae.decode(latent.unsqueeze(0)).sample for latent in latents]
|
285 |
+
)
|
286 |
+
pixels = pytorch2numpy(pixels)
|
287 |
+
pixels_with_lpips = []
|
288 |
+
lineart_pils = [Image.fromarray(lineart) for lineart in linearts]
|
289 |
+
for pixel in pixels:
|
290 |
+
pixel_pil = Image.fromarray(pixel)
|
291 |
+
pixels_with_lpips.append(
|
292 |
+
(
|
293 |
+
sum(
|
294 |
+
[
|
295 |
+
lpips_difference(lineart_pil, pixel_pil)
|
296 |
+
for lineart_pil in lineart_pils
|
297 |
+
]
|
298 |
+
),
|
299 |
+
pixel,
|
300 |
+
)
|
301 |
+
)
|
302 |
+
pixels = np.stack(
|
303 |
+
[i[1] for i in sorted(pixels_with_lpips, key=lambda x: x[0])], axis=0
|
304 |
+
)
|
305 |
+
torch.cuda.empty_cache()
|
306 |
+
|
307 |
+
return pixels, np.stack(linearts)
|
308 |
+
|
309 |
+
|
310 |
+
block = gr.Blocks().queue()
|
311 |
+
with block:
|
312 |
+
gr.Markdown("# Sketch/Lineart extractor")
|
313 |
+
|
314 |
+
with gr.Row():
|
315 |
+
with gr.Column():
|
316 |
+
input_fg = gr.Image(
|
317 |
+
sources=["upload"], type="numpy", label="Image", height=384
|
318 |
+
)
|
319 |
+
with gr.Row():
|
320 |
+
with gr.Column(scale=2, variant="compact"):
|
321 |
+
prompt = gr.Textbox(label="Output Prompt", interactive=True)
|
322 |
+
with gr.Column(scale=1, variant="compact", min_width=160):
|
323 |
+
n_prompt = gr.Textbox(
|
324 |
+
label="Negative Prompt",
|
325 |
+
value="lowres, worst quality, bad anatomy, bad hands, text, extra digit, fewer digits, cropped, low quality, jpeg artifacts, signature, watermark, username",
|
326 |
+
)
|
327 |
+
with gr.Row():
|
328 |
+
input_undo_steps = gr.Dropdown(
|
329 |
+
label="Operation Steps",
|
330 |
+
value=[850, 875, 900, 925, 950, 975],
|
331 |
+
choices=list(range(0, 1000, 25)),
|
332 |
+
multiselect=True,
|
333 |
+
)
|
334 |
+
num_sets = gr.Slider(
|
335 |
+
label="Num Sets", minimum=1, maximum=10, value=4, step=1
|
336 |
+
)
|
337 |
+
with gr.Row():
|
338 |
+
seed = gr.Slider(
|
339 |
+
label="Seed", minimum=0, maximum=50000, step=1, value=37462
|
340 |
+
)
|
341 |
+
image_width = gr.Slider(
|
342 |
+
label="Target size", minimum=512, maximum=1024, value=768, step=32
|
343 |
+
)
|
344 |
+
steps = gr.Slider(
|
345 |
+
label="Steps", minimum=1, maximum=32, value=16, step=1
|
346 |
+
)
|
347 |
+
cfg = gr.Slider(
|
348 |
+
label="CFG Scale", minimum=1.0, maximum=16, value=5, step=0.05
|
349 |
+
)
|
350 |
+
key_gen_button = gr.Button(value="Generate Sketch", interactive=False)
|
351 |
+
|
352 |
+
with gr.Column():
|
353 |
+
gr.Markdown("#### Sketch Outputs")
|
354 |
+
result_gallery = gr.Gallery(
|
355 |
+
height=384, object_fit="contain", label="Sketch Outputs", columns=4
|
356 |
+
)
|
357 |
+
gr.Markdown("#### Line Art Outputs")
|
358 |
+
lineart_result = gr.Gallery(
|
359 |
+
height=384,
|
360 |
+
object_fit="contain",
|
361 |
+
label="LineArt outputs",
|
362 |
+
)
|
363 |
+
|
364 |
+
input_fg.change(
|
365 |
+
lambda x: [
|
366 |
+
interrogator_process(x) if x is not None else "",
|
367 |
+
gr.update(interactive=True),
|
368 |
+
],
|
369 |
+
inputs=[input_fg],
|
370 |
+
outputs=[prompt, key_gen_button],
|
371 |
+
)
|
372 |
+
|
373 |
+
key_gen_button.click(
|
374 |
+
fn=process,
|
375 |
+
inputs=[
|
376 |
+
input_fg,
|
377 |
+
prompt,
|
378 |
+
input_undo_steps,
|
379 |
+
image_width,
|
380 |
+
seed,
|
381 |
+
steps,
|
382 |
+
n_prompt,
|
383 |
+
cfg,
|
384 |
+
num_sets,
|
385 |
+
],
|
386 |
+
outputs=[result_gallery, lineart_result],
|
387 |
+
).then(
|
388 |
+
lambda: gr.update(interactive=True),
|
389 |
+
outputs=[key_gen_button],
|
390 |
+
)
|
391 |
+
|
392 |
+
block.queue().launch()
|
diffusers_helper/attention.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional
|
2 |
+
|
3 |
+
import torch
|
4 |
+
|
5 |
+
try:
|
6 |
+
from xformers.ops import memory_efficient_attention
|
7 |
+
XFORMERS_AVAIL = True
|
8 |
+
except ImportError:
|
9 |
+
XFORMERS_AVAIL = False
|
10 |
+
|
11 |
+
|
12 |
+
class AttnProcessor2_0_xformers:
|
13 |
+
def __call__(
|
14 |
+
self,
|
15 |
+
attn,
|
16 |
+
hidden_states: torch.Tensor,
|
17 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
18 |
+
attention_mask: Optional[torch.Tensor] = None,
|
19 |
+
temb: Optional[torch.Tensor] = None,
|
20 |
+
*args,
|
21 |
+
**kwargs,
|
22 |
+
) -> torch.Tensor:
|
23 |
+
residual = hidden_states
|
24 |
+
if attn.spatial_norm is not None:
|
25 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
26 |
+
|
27 |
+
input_ndim = hidden_states.ndim
|
28 |
+
|
29 |
+
if input_ndim == 4:
|
30 |
+
batch_size, channel, height, width = hidden_states.shape
|
31 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
32 |
+
|
33 |
+
batch_size, sequence_length, _ = (
|
34 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
35 |
+
)
|
36 |
+
|
37 |
+
if attention_mask is not None:
|
38 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
39 |
+
# scaled_dot_product_attention expects attention_mask shape to be
|
40 |
+
# (batch, heads, source_length, target_length)
|
41 |
+
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
42 |
+
|
43 |
+
if attn.group_norm is not None:
|
44 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
45 |
+
|
46 |
+
query = attn.to_q(hidden_states)
|
47 |
+
|
48 |
+
if encoder_hidden_states is None:
|
49 |
+
encoder_hidden_states = hidden_states
|
50 |
+
elif attn.norm_cross:
|
51 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
52 |
+
|
53 |
+
key = attn.to_k(encoder_hidden_states)
|
54 |
+
value = attn.to_v(encoder_hidden_states)
|
55 |
+
|
56 |
+
inner_dim = key.shape[-1]
|
57 |
+
head_dim = inner_dim // attn.heads
|
58 |
+
|
59 |
+
query = query.view(batch_size, -1, attn.heads, head_dim)
|
60 |
+
|
61 |
+
key = key.view(batch_size, -1, attn.heads, head_dim)
|
62 |
+
value = value.view(batch_size, -1, attn.heads, head_dim)
|
63 |
+
|
64 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
65 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
66 |
+
hidden_states = memory_efficient_attention(
|
67 |
+
query, key, value, attention_mask, p=0.0
|
68 |
+
)
|
69 |
+
|
70 |
+
hidden_states = hidden_states.reshape(batch_size, -1, attn.heads * head_dim)
|
71 |
+
hidden_states = hidden_states.to(query.dtype)
|
72 |
+
|
73 |
+
# linear proj
|
74 |
+
hidden_states = attn.to_out[0](hidden_states)
|
75 |
+
# dropout
|
76 |
+
hidden_states = attn.to_out[1](hidden_states)
|
77 |
+
|
78 |
+
if input_ndim == 4:
|
79 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
80 |
+
|
81 |
+
if attn.residual_connection:
|
82 |
+
hidden_states = hidden_states + residual
|
83 |
+
|
84 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
85 |
+
|
86 |
+
return hidden_states
|
diffusers_helper/cat_cond.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
|
4 |
+
def unet_add_concat_conds(unet, new_channels=4):
|
5 |
+
with torch.no_grad():
|
6 |
+
new_conv_in = torch.nn.Conv2d(4 + new_channels, unet.conv_in.out_channels, unet.conv_in.kernel_size, unet.conv_in.stride, unet.conv_in.padding)
|
7 |
+
new_conv_in.weight.zero_()
|
8 |
+
new_conv_in.weight[:, :4, :, :].copy_(unet.conv_in.weight)
|
9 |
+
new_conv_in.bias = unet.conv_in.bias
|
10 |
+
unet.conv_in = new_conv_in
|
11 |
+
|
12 |
+
unet_original_forward = unet.forward
|
13 |
+
|
14 |
+
def hooked_unet_forward(sample, timestep, encoder_hidden_states, **kwargs):
|
15 |
+
cross_attention_kwargs = {k: v for k, v in kwargs['cross_attention_kwargs'].items()}
|
16 |
+
c_concat = cross_attention_kwargs.pop('concat_conds')
|
17 |
+
kwargs['cross_attention_kwargs'] = cross_attention_kwargs
|
18 |
+
|
19 |
+
c_concat = torch.cat([c_concat] * (sample.shape[0] // c_concat.shape[0]), dim=0).to(sample)
|
20 |
+
new_sample = torch.cat([sample, c_concat], dim=1)
|
21 |
+
return unet_original_forward(new_sample, timestep, encoder_hidden_states, **kwargs)
|
22 |
+
|
23 |
+
unet.forward = hooked_unet_forward
|
24 |
+
return
|
diffusers_helper/code_cond.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
from diffusers.models.embeddings import TimestepEmbedding, Timesteps
|
4 |
+
|
5 |
+
|
6 |
+
def unet_add_coded_conds(unet, added_number_count=1):
|
7 |
+
unet.add_time_proj = Timesteps(256, True, 0)
|
8 |
+
unet.add_embedding = TimestepEmbedding(256 * added_number_count, 1280)
|
9 |
+
|
10 |
+
def get_aug_embed(emb, encoder_hidden_states, added_cond_kwargs):
|
11 |
+
coded_conds = added_cond_kwargs.get("coded_conds")
|
12 |
+
batch_size = coded_conds.shape[0]
|
13 |
+
time_embeds = unet.add_time_proj(coded_conds.flatten())
|
14 |
+
time_embeds = time_embeds.reshape((batch_size, -1))
|
15 |
+
time_embeds = time_embeds.to(emb)
|
16 |
+
aug_emb = unet.add_embedding(time_embeds)
|
17 |
+
return aug_emb
|
18 |
+
|
19 |
+
unet.get_aug_embed = get_aug_embed
|
20 |
+
|
21 |
+
unet_original_forward = unet.forward
|
22 |
+
|
23 |
+
def hooked_unet_forward(sample, timestep, encoder_hidden_states, **kwargs):
|
24 |
+
cross_attention_kwargs = {k: v for k, v in kwargs['cross_attention_kwargs'].items()}
|
25 |
+
coded_conds = cross_attention_kwargs.pop('coded_conds')
|
26 |
+
kwargs['cross_attention_kwargs'] = cross_attention_kwargs
|
27 |
+
|
28 |
+
coded_conds = torch.cat([coded_conds] * (sample.shape[0] // coded_conds.shape[0]), dim=0).to(sample.device)
|
29 |
+
kwargs['added_cond_kwargs'] = dict(coded_conds=coded_conds)
|
30 |
+
return unet_original_forward(sample, timestep, encoder_hidden_states, **kwargs)
|
31 |
+
|
32 |
+
unet.forward = hooked_unet_forward
|
33 |
+
|
34 |
+
return
|
diffusers_helper/k_diffusion.py
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
from tqdm import tqdm
|
5 |
+
|
6 |
+
|
7 |
+
@torch.no_grad()
|
8 |
+
def sample_dpmpp_2m(model, x, sigmas, extra_args=None, callback=None, progress_tqdm=None):
|
9 |
+
"""DPM-Solver++(2M)."""
|
10 |
+
extra_args = {} if extra_args is None else extra_args
|
11 |
+
s_in = x.new_ones([x.shape[0]])
|
12 |
+
sigma_fn = lambda t: t.neg().exp()
|
13 |
+
t_fn = lambda sigma: sigma.log().neg()
|
14 |
+
old_denoised = None
|
15 |
+
|
16 |
+
bar = tqdm if progress_tqdm is None else progress_tqdm
|
17 |
+
|
18 |
+
for i in bar(range(len(sigmas) - 1)):
|
19 |
+
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
20 |
+
if callback is not None:
|
21 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
22 |
+
t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1])
|
23 |
+
h = t_next - t
|
24 |
+
if old_denoised is None or sigmas[i + 1] == 0:
|
25 |
+
x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised
|
26 |
+
else:
|
27 |
+
h_last = t - t_fn(sigmas[i - 1])
|
28 |
+
r = h_last / h
|
29 |
+
denoised_d = (1 + 1 / (2 * r)) * denoised - (1 / (2 * r)) * old_denoised
|
30 |
+
x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised_d
|
31 |
+
old_denoised = denoised
|
32 |
+
return x
|
33 |
+
|
34 |
+
|
35 |
+
class KModel:
|
36 |
+
def __init__(self, unet, timesteps=1000, linear_start=0.00085, linear_end=0.012, linear=False):
|
37 |
+
if linear:
|
38 |
+
betas = torch.linspace(linear_start, linear_end, timesteps, dtype=torch.float64)
|
39 |
+
else:
|
40 |
+
betas = torch.linspace(linear_start ** 0.5, linear_end ** 0.5, timesteps, dtype=torch.float64) ** 2
|
41 |
+
|
42 |
+
alphas = 1. - betas
|
43 |
+
alphas_cumprod = torch.tensor(np.cumprod(alphas, axis=0), dtype=torch.float32)
|
44 |
+
|
45 |
+
self.sigmas = ((1 - alphas_cumprod) / alphas_cumprod) ** 0.5
|
46 |
+
self.log_sigmas = self.sigmas.log()
|
47 |
+
self.sigma_data = 1.0
|
48 |
+
self.unet = unet
|
49 |
+
return
|
50 |
+
|
51 |
+
@property
|
52 |
+
def sigma_min(self):
|
53 |
+
return self.sigmas[0]
|
54 |
+
|
55 |
+
@property
|
56 |
+
def sigma_max(self):
|
57 |
+
return self.sigmas[-1]
|
58 |
+
|
59 |
+
def timestep(self, sigma):
|
60 |
+
log_sigma = sigma.log()
|
61 |
+
dists = log_sigma.to(self.log_sigmas.device) - self.log_sigmas[:, None]
|
62 |
+
return dists.abs().argmin(dim=0).view(sigma.shape).to(sigma.device)
|
63 |
+
|
64 |
+
def get_sigmas_karras(self, n, rho=7.):
|
65 |
+
ramp = torch.linspace(0, 1, n)
|
66 |
+
min_inv_rho = self.sigma_min ** (1 / rho)
|
67 |
+
max_inv_rho = self.sigma_max ** (1 / rho)
|
68 |
+
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
|
69 |
+
return torch.cat([sigmas, sigmas.new_zeros([1])])
|
70 |
+
|
71 |
+
def __call__(self, x, sigma, **extra_args):
|
72 |
+
x_ddim_space = x / (sigma[:, None, None, None] ** 2 + self.sigma_data ** 2) ** 0.5
|
73 |
+
x_ddim_space = x_ddim_space.to(dtype=self.unet.dtype)
|
74 |
+
t = self.timestep(sigma)
|
75 |
+
cfg_scale = extra_args['cfg_scale']
|
76 |
+
eps_positive = self.unet(x_ddim_space, t, return_dict=False, **extra_args['positive'])[0]
|
77 |
+
eps_negative = self.unet(x_ddim_space, t, return_dict=False, **extra_args['negative'])[0]
|
78 |
+
noise_pred = eps_negative + cfg_scale * (eps_positive - eps_negative)
|
79 |
+
return x - noise_pred * sigma[:, None, None, None]
|
80 |
+
|
81 |
+
|
82 |
+
class KDiffusionSampler:
|
83 |
+
def __init__(self, unet, **kwargs):
|
84 |
+
self.unet = unet
|
85 |
+
self.k_model = KModel(unet=unet, **kwargs)
|
86 |
+
|
87 |
+
@torch.inference_mode()
|
88 |
+
def __call__(
|
89 |
+
self,
|
90 |
+
initial_latent = None,
|
91 |
+
strength = 1.0,
|
92 |
+
num_inference_steps = 25,
|
93 |
+
guidance_scale = 5.0,
|
94 |
+
batch_size = 1,
|
95 |
+
generator = None,
|
96 |
+
prompt_embeds = None,
|
97 |
+
negative_prompt_embeds = None,
|
98 |
+
cross_attention_kwargs = None,
|
99 |
+
same_noise_in_batch = False,
|
100 |
+
progress_tqdm = None,
|
101 |
+
):
|
102 |
+
|
103 |
+
device = self.unet.device
|
104 |
+
|
105 |
+
# Sigmas
|
106 |
+
|
107 |
+
sigmas = self.k_model.get_sigmas_karras(int(num_inference_steps/strength))
|
108 |
+
sigmas = sigmas[-(num_inference_steps + 1):].to(device)
|
109 |
+
|
110 |
+
# Initial latents
|
111 |
+
|
112 |
+
if same_noise_in_batch:
|
113 |
+
noise = torch.randn(initial_latent.shape, generator=generator, device=device, dtype=self.unet.dtype).repeat(batch_size, 1, 1, 1)
|
114 |
+
initial_latent = initial_latent.repeat(batch_size, 1, 1, 1).to(device=device, dtype=self.unet.dtype)
|
115 |
+
else:
|
116 |
+
initial_latent = initial_latent.repeat(batch_size, 1, 1, 1).to(device=device, dtype=self.unet.dtype)
|
117 |
+
noise = torch.randn(initial_latent.shape, generator=generator, device=device, dtype=self.unet.dtype)
|
118 |
+
|
119 |
+
latents = initial_latent + noise * sigmas[0].to(initial_latent)
|
120 |
+
|
121 |
+
# Batch
|
122 |
+
|
123 |
+
latents = latents.to(device)
|
124 |
+
prompt_embeds = prompt_embeds.repeat(batch_size, 1, 1).to(device)
|
125 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(batch_size, 1, 1).to(device)
|
126 |
+
|
127 |
+
# Feeds
|
128 |
+
|
129 |
+
sampler_kwargs = dict(
|
130 |
+
cfg_scale=guidance_scale,
|
131 |
+
positive=dict(
|
132 |
+
encoder_hidden_states=prompt_embeds,
|
133 |
+
cross_attention_kwargs=cross_attention_kwargs
|
134 |
+
),
|
135 |
+
negative=dict(
|
136 |
+
encoder_hidden_states=negative_prompt_embeds,
|
137 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
138 |
+
)
|
139 |
+
)
|
140 |
+
|
141 |
+
# Sample
|
142 |
+
|
143 |
+
results = sample_dpmpp_2m(self.k_model, latents, sigmas, extra_args=sampler_kwargs, progress_tqdm=progress_tqdm)
|
144 |
+
|
145 |
+
return results
|
diffusers_helper/utils.py
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import random
|
4 |
+
import glob
|
5 |
+
import torch
|
6 |
+
import einops
|
7 |
+
import torchvision
|
8 |
+
|
9 |
+
import safetensors.torch as sf
|
10 |
+
|
11 |
+
|
12 |
+
def write_to_json(data, file_path):
|
13 |
+
temp_file_path = file_path + ".tmp"
|
14 |
+
with open(temp_file_path, 'wt', encoding='utf-8') as temp_file:
|
15 |
+
json.dump(data, temp_file, indent=4)
|
16 |
+
os.replace(temp_file_path, file_path)
|
17 |
+
return
|
18 |
+
|
19 |
+
|
20 |
+
def read_from_json(file_path):
|
21 |
+
with open(file_path, 'rt', encoding='utf-8') as file:
|
22 |
+
data = json.load(file)
|
23 |
+
return data
|
24 |
+
|
25 |
+
|
26 |
+
def get_active_parameters(m):
|
27 |
+
return {k:v for k, v in m.named_parameters() if v.requires_grad}
|
28 |
+
|
29 |
+
|
30 |
+
def cast_training_params(m, dtype=torch.float32):
|
31 |
+
for param in m.parameters():
|
32 |
+
if param.requires_grad:
|
33 |
+
param.data = param.to(dtype)
|
34 |
+
return
|
35 |
+
|
36 |
+
|
37 |
+
def set_attr_recursive(obj, attr, value):
|
38 |
+
attrs = attr.split(".")
|
39 |
+
for name in attrs[:-1]:
|
40 |
+
obj = getattr(obj, name)
|
41 |
+
setattr(obj, attrs[-1], value)
|
42 |
+
return
|
43 |
+
|
44 |
+
|
45 |
+
@torch.no_grad()
|
46 |
+
def batch_mixture(a, b, probability_a=0.5, mask_a=None):
|
47 |
+
assert a.shape == b.shape, "Tensors must have the same shape"
|
48 |
+
batch_size = a.size(0)
|
49 |
+
|
50 |
+
if mask_a is None:
|
51 |
+
mask_a = torch.rand(batch_size) < probability_a
|
52 |
+
|
53 |
+
mask_a = mask_a.to(a.device)
|
54 |
+
mask_a = mask_a.reshape((batch_size,) + (1,) * (a.dim() - 1))
|
55 |
+
result = torch.where(mask_a, a, b)
|
56 |
+
return result
|
57 |
+
|
58 |
+
|
59 |
+
@torch.no_grad()
|
60 |
+
def zero_module(module):
|
61 |
+
for p in module.parameters():
|
62 |
+
p.detach().zero_()
|
63 |
+
return module
|
64 |
+
|
65 |
+
|
66 |
+
def load_last_state(model, folder='accelerator_output'):
|
67 |
+
file_pattern = os.path.join(folder, '**', 'model.safetensors')
|
68 |
+
files = glob.glob(file_pattern, recursive=True)
|
69 |
+
|
70 |
+
if not files:
|
71 |
+
print("No model.safetensors files found in the specified folder.")
|
72 |
+
return
|
73 |
+
|
74 |
+
newest_file = max(files, key=os.path.getmtime)
|
75 |
+
state_dict = sf.load_file(newest_file)
|
76 |
+
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)
|
77 |
+
|
78 |
+
if missing_keys:
|
79 |
+
print("Missing keys:", missing_keys)
|
80 |
+
if unexpected_keys:
|
81 |
+
print("Unexpected keys:", unexpected_keys)
|
82 |
+
|
83 |
+
print("Loaded model state from:", newest_file)
|
84 |
+
return
|
85 |
+
|
86 |
+
|
87 |
+
def generate_random_prompt_from_tags(tags_str, min_length=3, max_length=32):
|
88 |
+
tags = tags_str.split(', ')
|
89 |
+
tags = random.sample(tags, k=min(random.randint(min_length, max_length), len(tags)))
|
90 |
+
prompt = ', '.join(tags)
|
91 |
+
return prompt
|
92 |
+
|
93 |
+
|
94 |
+
def save_bcthw_as_mp4(x, output_filename, fps=10):
|
95 |
+
b, c, t, h, w = x.shape
|
96 |
+
|
97 |
+
per_row = b
|
98 |
+
for p in [6, 5, 4, 3, 2]:
|
99 |
+
if b % p == 0:
|
100 |
+
per_row = p
|
101 |
+
break
|
102 |
+
|
103 |
+
os.makedirs(os.path.dirname(os.path.abspath(os.path.realpath(output_filename))), exist_ok=True)
|
104 |
+
x = torch.clamp(x.float(), -1., 1.) * 127.5 + 127.5
|
105 |
+
x = x.detach().cpu().to(torch.uint8)
|
106 |
+
x = einops.rearrange(x, '(m n) c t h w -> t (m h) (n w) c', n=per_row)
|
107 |
+
torchvision.io.write_video(output_filename, x, fps=fps, video_codec='h264', options={'crf': '0'})
|
108 |
+
return x
|
109 |
+
|
110 |
+
|
111 |
+
def save_bcthw_as_png(x, output_filename):
|
112 |
+
os.makedirs(os.path.dirname(os.path.abspath(os.path.realpath(output_filename))), exist_ok=True)
|
113 |
+
x = torch.clamp(x.float(), -1., 1.) * 127.5 + 127.5
|
114 |
+
x = x.detach().cpu().to(torch.uint8)
|
115 |
+
x = einops.rearrange(x, 'b c t h w -> c (b h) (t w)')
|
116 |
+
torchvision.io.write_png(x, output_filename)
|
117 |
+
return output_filename
|
118 |
+
|
119 |
+
|
120 |
+
def add_tensors_with_padding(tensor1, tensor2):
|
121 |
+
if tensor1.shape == tensor2.shape:
|
122 |
+
return tensor1 + tensor2
|
123 |
+
|
124 |
+
shape1 = tensor1.shape
|
125 |
+
shape2 = tensor2.shape
|
126 |
+
|
127 |
+
new_shape = tuple(max(s1, s2) for s1, s2 in zip(shape1, shape2))
|
128 |
+
|
129 |
+
padded_tensor1 = torch.zeros(new_shape)
|
130 |
+
padded_tensor2 = torch.zeros(new_shape)
|
131 |
+
|
132 |
+
padded_tensor1[tuple(slice(0, s) for s in shape1)] = tensor1
|
133 |
+
padded_tensor2[tuple(slice(0, s) for s in shape2)] = tensor2
|
134 |
+
|
135 |
+
result = padded_tensor1 + padded_tensor2
|
136 |
+
return result
|
requirements.txt
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
diffusers==0.28.0
|
2 |
+
transformers==4.41.1
|
3 |
+
gradio==4.31.5
|
4 |
+
bitsandbytes==0.43.1
|
5 |
+
accelerate==0.30.1
|
6 |
+
protobuf==3.20
|
7 |
+
opencv-python
|
8 |
+
tensorboardX
|
9 |
+
safetensors
|
10 |
+
pillow
|
11 |
+
einops
|
12 |
+
torch
|
13 |
+
torchvision
|
14 |
+
dghs-imgutils
|
15 |
+
spaces
|