File size: 12,663 Bytes
40cbba8
a1372fa
 
40cbba8
 
 
 
 
 
 
 
 
 
a1372fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f72b76
a1372fa
 
 
 
 
 
 
 
 
 
 
a3ce076
 
 
 
a1372fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f72b76
a1372fa
 
 
 
 
 
 
4f72b76
a1372fa
 
 
 
 
 
 
 
 
 
4f72b76
a1372fa
4f72b76
a1372fa
4f72b76
a1372fa
 
 
 
 
 
 
4f72b76
a1372fa
 
 
 
 
4f72b76
a1372fa
 
 
 
 
 
 
 
 
 
 
 
 
 
4f72b76
a1372fa
4f72b76
a1372fa
4f72b76
a1372fa
 
 
 
 
 
 
 
 
4f72b76
 
a1372fa
4f72b76
a1372fa
 
4f72b76
a1372fa
 
 
 
 
 
 
 
 
 
4f72b76
a1372fa
 
 
 
 
 
 
4f72b76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1372fa
4f72b76
 
 
 
 
 
 
 
 
a1372fa
 
 
 
 
 
 
 
4f72b76
a1372fa
 
 
 
 
 
 
4f72b76
a1372fa
 
 
 
 
 
 
 
 
 
 
 
 
4f72b76
 
 
 
 
a1372fa
 
 
a3ce076
a1372fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7fdb61e
a1372fa
 
 
 
 
7fdb61e
 
 
 
 
a1372fa
7fdb61e
a1372fa
 
 
 
 
4f72b76
a1372fa
 
 
 
 
 
 
 
 
 
 
7fdb61e
a1372fa
 
 
4f72b76
 
 
 
 
a1372fa
4f72b76
a1372fa
7fdb61e
a1372fa
 
7fdb61e
 
 
 
 
 
a1372fa
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
import sys, os
import gradio as gr

## if kgen not exist
try:
    import kgen
except:
    GH_TOKEN = os.getenv("GITHUB_TOKEN")
    git_url = f"https://{GH_TOKEN}@github.com/KohakuBlueleaf/TITPOP-KGen@titpop"

    ## call pip install
    os.system(f"pip install git+{git_url}")

import re
import random
from time import time

import torch
from transformers import set_seed
if sys.platform == "win32":
    #dev env in windows, @spaces.GPU will cause problem
    def GPU(func):
        return func
else:
    from spaces import GPU

import kgen.models as models
import kgen.executor.titpop as titpop
from kgen.formatter import seperate_tags, apply_format
from kgen.generate import generate

from diff import load_model, encode_prompts
from meta import DEFAULT_NEGATIVE_PROMPT, DEFAULT_FORMAT


sdxl_pipe = load_model()

models.load_model(
    "KBlueLeaf/TITPOP-200M-dev",
    device="cuda",
    subfolder="dan-cc-coyo_epoch2",
)
generate(max_new_tokens=4)
DEFAULT_TAGS = """
1girl, king halo (umamusume), umamusume,
ningen mame, ciloranko, ogipote, misu kasumi,
solo, leaning forward, sky,
masterpiece, absurdres, sensitive, newest
""".strip()
DEFAULT_NL = """
An illustration of a girl
""".strip()


def format_time(timing):
    total = timing["total"]
    generate_pass = timing["generate_pass"]

    result = ""

    result += f"""
### Process Time
| Total    | {total:5.2f} sec / {generate_pass:5} Passes | {generate_pass/total:7.2f} Passes Per Second|
|-|-|-|
"""
    if "generated_tokens" in timing:
        total_generated_tokens = timing["generated_tokens"]
        total_input_tokens = timing["input_tokens"]
    if "generated_tokens" in timing and "total_sampling" in timing:
        sampling_time = timing["total_sampling"] / 1000
        process_time = timing["prompt_process"] / 1000
        model_time = timing["total_eval"] / 1000

        result += f"""| Process  | {process_time:5.2f} sec / {total_input_tokens:5} Tokens | {total_input_tokens/process_time:7.2f} Tokens Per Second|
| Sampling | {sampling_time:5.2f} sec / {total_generated_tokens:5} Tokens | {total_generated_tokens/sampling_time:7.2f} Tokens Per Second|
| Eval     | {model_time:5.2f} sec / {total_generated_tokens:5} Tokens | {total_generated_tokens/model_time:7.2f} Tokens Per Second|
"""

    if "generated_tokens" in timing:
        result += f"""
### Processed Tokens:
* {total_input_tokens:} Input Tokens
* {total_generated_tokens:} Output Tokens
"""
    return result


@GPU
@torch.no_grad()
def generate(
    tags,
    nl_prompt,
    black_list,
    temp,
    output_format,
    target_length,
    top_p,
    min_p,
    top_k,
    seed,
    escape_brackets,
):
    default_format = DEFAULT_FORMAT[output_format]
    titpop.BAN_TAGS = [t.strip() for t in black_list.split(",") if t.strip()]
    generation_setting = {
        "seed": seed,
        "temperature": temp,
        "top_p": top_p,
        "min_p": min_p,
        "top_k": top_k,
    }
    inputs = seperate_tags(tags.split(","))
    if nl_prompt:
        if "<|extended|>" in default_format:
            inputs["extended"] = nl_prompt
        elif "<|generated|>" in default_format:
            inputs["generated"] = nl_prompt
    input_prompt = apply_format(inputs, default_format)
    if escape_brackets:
        input_prompt = re.sub(r"([()\[\]])", r"\\\1", input_prompt)

    meta, operations, general, nl_prompt = titpop.parse_titpop_request(
        seperate_tags(tags.split(",")),
        nl_prompt,
        tag_length_target=target_length,
        generate_extra_nl_prompt="<|generated|>" in default_format or not nl_prompt,
    )
    t0 = time()
    for result, timing in titpop.titpop_runner_generator(
        meta, operations, general, nl_prompt, **generation_setting
    ):
        result = apply_format(result, default_format)
        if escape_brackets:
            result = re.sub(r"([()\[\]])", r"\\\1", result)
        timing["total"] = time() - t0
        yield result, input_prompt, format_time(timing)


@GPU
@torch.no_grad()
def generate_image(
    seed,
    prompt,
    prompt2,
):
    torch.cuda.empty_cache()
    set_seed(seed)
    prompt_embeds, negative_prompt_embeds, pooled_embeds2, neg_pooled_embeds2 = (
        encode_prompts(sdxl_pipe, prompt2, DEFAULT_NEGATIVE_PROMPT)
    )
    result2 = sdxl_pipe(
        prompt_embeds=prompt_embeds,
        negative_prompt_embeds=negative_prompt_embeds,
        pooled_prompt_embeds=pooled_embeds2,
        negative_pooled_prompt_embeds=neg_pooled_embeds2,
        num_inference_steps=24,
        width=1024,
        height=1024,
        guidance_scale=6.0,
    ).images[0]
    yield result2, None

    prompt_embeds, negative_prompt_embeds, pooled_embeds2, neg_pooled_embeds2 = (
        encode_prompts(sdxl_pipe, prompt, DEFAULT_NEGATIVE_PROMPT)
    )
    set_seed(seed)
    result = sdxl_pipe(
        prompt_embeds=prompt_embeds,
        negative_prompt_embeds=negative_prompt_embeds,
        pooled_prompt_embeds=pooled_embeds2,
        negative_pooled_prompt_embeds=neg_pooled_embeds2,
        num_inference_steps=24,
        width=1024,
        height=1024,
        guidance_scale=6.0,
    ).images[0]
    torch.cuda.empty_cache()
    yield result2, result


if __name__ == "__main__":
    with gr.Blocks(theme=gr.themes.Soft()) as demo:
        with gr.Accordion("Introduction and Instructions", open=False):
            gr.Markdown(
                """
## TITPOP Demo
### What is this
TITPOP is a tool to extend, generate, refine the input prompt for T2I models.
<br>It can work on both Danbooru tags and Natural Language. Which means you can use it on almost all the existed T2I models.
<br>You can take it as "pro max" version of [DTG](https://huggingface.co/KBlueLeaf/DanTagGen-delta-rev2)

### How to use this demo
1. Enter your tags(optional): put the desired tags into "danboru tags" box
2. Enter your NL Prompt(optional): put the desired natural language prompt into "Natural Language Prompt" box
3. Enter your black list(optional): put the desired black list into "black list" box
4. Adjust the settings: length, temp, top_p, min_p, top_k, seed ...
4. Click "TITPOP" button: you will see refined prompt on "result" box
5. If you like the result, click "Generate Image From Result" button
    * You will see 2 generated images, left one is based on your prompt, right one is based on refined prompt
    * The backend is diffusers, there are no weighting mechanism, so Escape Brackets is default to False

### Why inference code is private? When will it be open sourced?
1. This model/tool is still under development, currently is early Alpha version.
2. I'm doing some research and projects based on this.
3. The model is released under CC-BY-NC-ND License currently. If you have interest, you can implement inference by yourself.
4. Once the project/research are done, I will open source all these models/codes with Apache2 license.

### Notification
**ITPOP is NOT a T2I model. It is Prompt Gen, or, Text-to-Text model. 
<br>The generated image is come from [Kohaku-XL-Zeta](https://huggingface.co/KBlueLeaf/Kohaku-XL-Zeta) model**
"""
            )
        with gr.Row():
            with gr.Column(scale=5):
                with gr.Row():
                    with gr.Column(scale=3):
                        tags_input = gr.TextArea(
                            label="Danbooru Tags",
                            lines=7,
                            show_copy_button=True,
                            interactive=True,
                            value=DEFAULT_TAGS,
                            placeholder="Enter danbooru tags here",
                        )
                        nl_prompt_input = gr.Textbox(
                            label="Natural Language Prompt",
                            lines=7,
                            show_copy_button=True,
                            interactive=True,
                            value=DEFAULT_NL,
                            placeholder="Enter Natural Language Prompt here",
                        )
                        black_list = gr.TextArea(
                            label="Black List (seperated by comma)",
                            lines=4,
                            interactive=True,
                            value="monochrome",
                            placeholder="Enter tag/nl black list here",
                        )
                    with gr.Column(scale=2):
                        output_format = gr.Dropdown(
                            label="Output Format",
                            choices=list(DEFAULT_FORMAT.keys()),
                            value="Both, tag first (recommend)"
                        )
                        target_length = gr.Dropdown(
                            label="Target Length",
                            choices=["very_short", "short", "long", "very_long"],
                            value="long",
                        )
                        temp = gr.Slider(
                            label="Temp",
                            minimum=0.0,
                            maximum=1.5,
                            value=0.5,
                            step=0.05,
                        )
                        top_p = gr.Slider(
                            label="Top P",
                            minimum=0.0,
                            maximum=1.0,
                            value=0.95,
                            step=0.05,
                        )
                        min_p = gr.Slider(
                            label="Min P",
                            minimum=0.0,
                            maximum=0.2,
                            value=0.05,
                            step=0.01,
                        )
                        top_k = gr.Slider(
                            label="Top K", minimum=0, maximum=120, value=60, step=1
                        )
                        with gr.Row():
                            seed = gr.Number(
                                label="Seed",
                                minimum=0,
                                maximum=2147483647,
                                value=20090220,
                                step=1,
                            )
                            escape_brackets = gr.Checkbox(
                                label="Escape Brackets", value=False
                            )
                        submit = gr.Button("TITPOP!", variant="primary")
                with gr.Accordion("Speed statstics", open=False):
                    cost_time = gr.Markdown()
            with gr.Column(scale=5):
                result = gr.TextArea(
                    label="Result", lines=8, show_copy_button=True, interactive=False
                )
                input_prompt = gr.Textbox(
                    label="Input Prompt", lines=1, interactive=False, visible=False
                )
                gen_img = gr.Button("Generate Image from Result", variant="primary", interactive=False)
                with gr.Row():
                    with gr.Column():
                        img1 = gr.Image(label="Original Propmt", interactive=False)
                    with gr.Column():
                        img2 = gr.Image(label="Generated Prompt", interactive=False)
        def generate_wrapper(*args):
            yield "", "", "", gr.update(interactive=False),
            for i in generate(*args):
                yield *i, gr.update(interactive=False)
            yield *i, gr.update(interactive=True)
        submit.click(
            generate_wrapper,
            [
                tags_input,
                nl_prompt_input,
                black_list,
                temp,
                output_format,
                target_length,
                top_p,
                min_p,
                top_k,
                seed,
                escape_brackets,
            ],
            [
                result,
                input_prompt,
                cost_time,
                gen_img,
            ],
            queue=True,
        )
        
        def generate_image_wrapper(seed, result, input_prompt):
            for img1, img2 in generate_image(seed, result, input_prompt):
                yield img1, img2, gr.update(interactive=False)
            yield img1, img2, gr.update(interactive=True)
        gen_img.click(
            generate_image_wrapper,
            [seed, result, input_prompt],
            [img1, img2, submit],
            queue=True,
        )
        gen_img.click(
            lambda *args: gr.update(interactive=False),
            None,
            [submit],
            queue=False,
        )

    demo.launch()