File size: 13,758 Bytes
91cd767
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
577f29f
91cd767
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
577f29f
91cd767
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
import streamlit as st
import PyPDF2
import spacy
import pandas as pd
import json
from collections import Counter

# Custom CSS to enhance UI
def set_custom_css():
    st.markdown("""
    <style>
        .stProgress .st-bo {
            background-color: #f0f2f6;
        }
        .stProgress .st-bp {
            background: linear-gradient(to right, #4CAF50, #8BC34A);
        }
        .skill-tag {
            display: inline-block;
            padding: 5px 10px;
            margin: 2px;
            border-radius: 15px;
            font-size: 14px;
            font-weight: 500;
        }
        .present-skill {
            background-color: #e7f3ff;
            color: #1e88e5;
            border: 1px solid #1e88e5;
        }
        .missing-skill {
            background-color: #ffebee;
            color: #e53935;
            border: 1px solid #e53935;
        }
        .main-header {
            color: #1e88e5;
            text-align: center;
            padding: 20px;
            border-radius: 10px;
            margin-bottom: 30px;
        }
        .score-card {
            padding: 20px;
            border-radius: 10px;
            text-align: center;
            box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
        }
        .high-score {
            background: linear-gradient(135deg, #4CAF50, #8BC34A);
            color: white;
        }
        .medium-score {
            background: linear-gradient(135deg, #FFA726, #FFB74D);
            color: white;
        }
        .low-score {
            background: linear-gradient(135deg, #EF5350, #E57373);
            color: white;
        }
    </style>
    """, unsafe_allow_html=True)

@st.cache_resource
def load_spacy():
    try:
        return spacy.load("en_core_web_sm")
    except:
        st.warning("Downloading language model...")
        import subprocess
        subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
        return spacy.load("en_core_web_sm")

def extract_text_from_pdf(pdf_file):
    try:
        pdf_reader = PyPDF2.PdfReader(pdf_file)
        text = ""
        for page in pdf_reader.pages:
            text += page.extract_text() + " "
        return text.strip()
    except Exception as e:
        st.error(f"Error extracting text from PDF: {str(e)}")
        return ""

def extract_skills(text, nlp):
    doc = nlp(text.lower())
    
    technical_patterns = {
        # Programming Languages
        "python", "java", "javascript", "c++", "ruby", "php", "swift", "kotlin", "go",
        # Web Technologies
        "html", "css", "react", "angular", "vue.js", "node.js", "express.js", "django",
        "flask", "spring boot", "asp.net","ReactJS","React.js","NodeJS","Node.js"
        # Databases
        "sql", "mysql", "postgresql", "mongodb", "oracle", "redis", "elasticsearch",
        # Cloud & DevOps
        "aws", "azure", "gcp", "docker", "kubernetes", "jenkins", "gitlab", "terraform",
        "ansible", "devops", "ci/cd",
        # Data Science & AI
        "machine learning", "deep learning", "artificial intelligence", "data analysis",
        "pandas", "numpy", "scikit-learn", "tensorflow", "pytorch", "nlp",
        # Other Technical Skills
        "git", "rest api", "graphql", "microservices", "linux", "agile", "scrum"
    }
    
    soft_patterns = {
        # Communication
        "communication", "presentation", "public speaking", "writing", "listening",
        # Leadership
        "leadership", "team management", "mentoring", "coaching", "strategic thinking",
        # Collaboration
        "teamwork", "collaboration", "interpersonal", "relationship building",
        # Problem Solving
        "problem solving", "analytical", "critical thinking", "decision making",
        "troubleshooting",
        # Project Management
        "project management", "time management", "organization", "planning",
        "risk management",
        # Other Soft Skills
        "adaptability", "creativity", "innovation", "attention to detail", "multitasking",
        "negotiation", "conflict resolution", "customer service"
    }
    
    found_technical_skills = set()
    found_soft_skills = set()
    
    text_lower = text.lower()
    for skill in technical_patterns:
        if skill in text_lower:
            found_technical_skills.add(skill)
    
    for skill in soft_patterns:
        if skill in text_lower:
            found_soft_skills.add(skill)
    
    return list(found_technical_skills), list(found_soft_skills)

def boost_score(original_score, boost_factor=1.2):
    """Boost the score while keeping it within reasonable bounds"""
    boosted = original_score * boost_factor
    return min(100, max(boosted, original_score))

def calculate_match_score(resume_skills, jd_skills, weight):
    if not jd_skills:
        return 0.0
    
    matched_skills = set(resume_skills) & set(jd_skills)
    base_score = (len(matched_skills) / len(set(jd_skills))) * 100 * weight
    
    # Apply boosting to the base score
    boosted_score = boost_score(base_score)
    return min(100 * weight, boosted_score)

def analyze_resume(resume_text, job_description, nlp):
    try:
        resume_tech_skills, resume_soft_skills = extract_skills(resume_text, nlp)
        jd_tech_skills, jd_soft_skills = extract_skills(job_description, nlp)
        
        weights = {
            'technical': 0.8,
            'soft': 0.2
        }
        
        tech_score = calculate_match_score(resume_tech_skills, jd_tech_skills, weights['technical'])
        soft_score = calculate_match_score(resume_soft_skills, jd_soft_skills, weights['soft'])
        
        # Apply additional boosting for overall score
        overall_score = min(100, boost_score(tech_score + soft_score, 1.15))
        
        tech_match_percent = boost_score((len(set(resume_tech_skills) & set(jd_tech_skills)) / 
                            max(len(set(jd_tech_skills)), 1)) * 100)
        soft_match_percent = boost_score((len(set(resume_soft_skills) & set(jd_soft_skills)) / 
                            max(len(set(jd_soft_skills)), 1)) * 100)
        
        missing_tech_skills = list(set(jd_tech_skills) - set(resume_tech_skills))
        missing_soft_skills = list(set(jd_soft_skills) - set(resume_soft_skills))
        
        recommendations = []
        if missing_tech_skills:
            recommendations.append(f"Consider acquiring these technical skills: {', '.join(missing_tech_skills)}")
        if missing_soft_skills:
            recommendations.append(f"Demonstrate these soft skills: {', '.join(missing_soft_skills)}")
        if tech_match_percent < 75:
            recommendations.append("Focus on gaining more relevant technical skills for this position")
        if soft_match_percent < 75:
            recommendations.append("Emphasize soft skills more in your resume")
        
        if overall_score >= 80:
            assessment = "Excellent match! Your profile strongly aligns with the job requirements."
        elif overall_score >= 65:
            assessment = "Good match! Your profile aligns well with most job requirements."
        elif overall_score >= 50:
            assessment = "Moderate match. Consider improving in the suggested areas."
        else:
            assessment = "Additional skill development recommended to better match the job requirements."
        
        return {
            "match_score": round(overall_score),
            "key_matches": [
                f"Technical skills match: {tech_match_percent:.1f}%",
                f"Soft skills match: {soft_match_percent:.1f}%",
                f"Matched technical skills: {', '.join(sorted(resume_tech_skills))}" if resume_tech_skills else "No technical skills found",
                f"Matched soft skills: {', '.join(sorted(resume_soft_skills))}" if resume_soft_skills else "No soft skills found"
            ],
            "gaps": [
                f"Missing technical skills: {', '.join(sorted(missing_tech_skills))}" if missing_tech_skills else "No major technical skill gaps",
                f"Missing soft skills: {', '.join(sorted(missing_soft_skills))}" if missing_soft_skills else "No major soft skill gaps"
            ],
            "skill_analysis": {
                "technical_skills": {
                    "present": sorted(resume_tech_skills),
                    "missing": sorted(missing_tech_skills)
                },
                "soft_skills": {
                    "present": sorted(resume_soft_skills),
                    "missing": sorted(missing_soft_skills)
                }
            },
            "recommendations": recommendations if recommendations else ["Your profile shows strong alignment with the job requirements"],
            "overall_assessment": f"{assessment} Overall match: {round(overall_score)}%, "
                                f"with technical skills at {tech_match_percent:.1f}% "
                                f"and soft skills at {soft_match_percent:.1f}%"
        }
    except Exception as e:
        st.error(f"Error in analysis: {str(e)}")
        return None

def display_skill_tags(skills, style_class):
    """Display skills as colored tags"""
    if not skills:
        st.write("None")
        return
    
    tags_html = ""
    for skill in skills:
        tags_html += f'<span class="skill-tag {style_class}">{skill}</span>'
    st.markdown(tags_html, unsafe_allow_html=True)

def main():
    st.set_page_config(page_title="AI Resume Analyzer", page_icon="πŸ“„", layout="wide")
    set_custom_css()
    
    st.markdown('<h1 class="main-header">πŸš€ AI-Powered Resume Analyzer</h1>', unsafe_allow_html=True)
    
    
    nlp = load_spacy()
    
    col1, col2 = st.columns(2)
    
    with col1:
        st.markdown("### πŸ“Ž Upload Resume")
        pdf_file = st.file_uploader("Upload your resume (PDF format)", type="pdf")
        
    with col2:
        st.markdown("### πŸ’Ό Job Description")
        jd_text = st.text_area("Paste the job description here")
    
    col1, col2, col3 = st.columns([1, 2, 1])
    with col2:
        analyze_button = st.button("πŸ” Analyze Resume", use_container_width=True)
    
    if analyze_button:
        if not pdf_file or not jd_text:
            st.error("⚠️ Please provide both resume and job description.")
            return
            
        with st.spinner("πŸ”„ Analyzing your resume..."):
            resume_text = extract_text_from_pdf(pdf_file)
            if not resume_text:
                st.error("πŸ“„ Could not extract text from the PDF. Please try another file.")
                return
                
            analysis = analyze_resume(resume_text, jd_text, nlp)
            if not analysis:
                st.error("❌ Analysis failed. Please try again.")
                return
            
            score = analysis.get('match_score', 0)
            
            # Score display with gradient background
            score_class = "high-score" if score >= 80 else "medium-score" if score >= 65 else "low-score"
            st.markdown(f"""
                <div class="score-card {score_class}">
                    <h2>Overall Match Score</h2>
                    <h1>{score}%</h1>
                </div>
            """, unsafe_allow_html=True)
            
            st.markdown("---")
            
            # Create tabs with enhanced styling
            tab1, tab2, tab3 = st.tabs(["πŸ’ͺ Skills Match", "🎯 Areas to Improve", "πŸ“‹ Recommendations"])
            
            with tab1:
                st.markdown("### 🌟 Present Skills")
                col1, col2 = st.columns(2)
                with col1:
                    st.markdown("#### Technical Skills")
                    display_skill_tags(analysis['skill_analysis']['technical_skills']['present'], "present-skill")
                with col2:
                    st.markdown("#### Soft Skills")
                    display_skill_tags(analysis['skill_analysis']['soft_skills']['present'], "present-skill")
            
            with tab2:
                st.markdown("### 🎯 Skills to Acquire")
                col1, col2 = st.columns(2)
                with col1:
                    st.markdown("#### Technical Skills")
                    display_skill_tags(analysis['skill_analysis']['technical_skills']['missing'], "missing-skill")
                with col2:
                    st.markdown("#### Soft Skills")
                    display_skill_tags(analysis['skill_analysis']['soft_skills']['missing'], "missing-skill")
            
            with tab3:
                st.markdown("### πŸ“ Personalized Recommendations")
                for rec in analysis['recommendations']:
                    st.info(rec)
            
            # Export Option
            st.markdown("---")
            st.markdown("### πŸ“₯ Export Your Analysis")
            export_data = {
                "Resume Analysis Report": {
                    "Overall Match": f"{score}%",
                    "Assessment": analysis['overall_assessment'],
                    "Key Strengths": analysis['key_matches'],
                    "Areas for Improvement": analysis['gaps'],
                    "Skills Analysis": analysis['skill_analysis'],
                    "Recommendations": analysis['recommendations']
                }
            }
            
            col1, col2, col3 = st.columns([1, 2, 1])
            with col2:
                st.download_button(
                    label="πŸ“₯ Download Analysis Report",
                    data=json.dumps(export_data, indent=2),
                    file_name="resume_analysis_report.json",
                    mime="application/json",
                    use_container_width=True
                )

if __name__ == "__main__":
    main()