File size: 14,220 Bytes
4f6b78d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use 
# under the terms of the LICENSE.md file.
#
# For inquiries contact  [email protected]
#

import os
import numpy as np
import torch
from random import randint
from utils.loss_utils import l1_loss, ssim
from gaussian_renderer import render, network_gui, render_confidence
import sys
from scene import Scene, GaussianModel
from utils.general_utils import safe_state
from tqdm import tqdm
from utils.image_utils import psnr
from argparse import ArgumentParser, Namespace
from arguments import ModelParams, PipelineParams, OptimizationParams
from scene.cameras import Camera
from utils.pose_utils import get_camera_from_tensor
import torchvision
import dearpygui.dearpygui as dpg
from scipy.spatial.transform import Rotation
import random

def training(dataset, opt, pipe, testing_iterations, saving_iterations, checkpoint_iterations, checkpoint, debug_from, args):

    first_iter = 0
    gaussians = GaussianModel(dataset.sh_degree)
    scene = Scene(dataset, gaussians, opt=args, shuffle=False)      
    gaussians.training_setup(opt)
    if checkpoint:
        (model_params, first_iter) = torch.load(checkpoint)
        gaussians.restore(model_params, opt)
    bg_color = [1, 1, 1] if dataset.white_background else [0, 0, 0]
    background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")

    iter_start = torch.cuda.Event(enable_timing = True)
    iter_end = torch.cuda.Event(enable_timing = True)

    viewpoint_stack = None
    ema_loss_for_log = 0.0
    progress_bar = tqdm(range(first_iter, opt.iterations), desc="Training progress")
    first_iter += 1

        
    for iteration in range(first_iter, opt.iterations + 1):        

        iter_start.record()

        gaussians.update_learning_rate(iteration)

        if args.optim_pose==False:
            gaussians.get_P().requires_grad_(False)

        # Every 1000 its we increase the levels of SH up to a maximum degree
        if iteration % 3000 == 0:
            gaussians.oneupSHdegree()

        # Pick a random Camera
        if not viewpoint_stack:
            viewpoint_stack = scene.getTrainCameras().copy()

        # Render
        if (iteration - 1) == debug_from:
            pipe.debug = True
        bg = torch.rand((3), device="cuda") if opt.random_background else background


        viewpoint_cam = viewpoint_stack.pop(randint(0, len(viewpoint_stack)-1))
        pose = gaussians.get_RT(viewpoint_cam.uid)


        render_pkg = render(viewpoint_cam, gaussians, pipe, bg, camera_pose=pose)
        image, viewspace_point_tensor, visibility_filter, radii = render_pkg["render"], render_pkg["viewspace_points"], render_pkg["visibility_filter"], render_pkg["radii"]


        # Loss
        gt_image = viewpoint_cam.original_image.cuda()

        static = gaussians._conf_static[viewpoint_cam.uid]

        image = image * static 
        gt_image = gt_image * static
        Ll1 = l1_loss(image, gt_image, reduce=False)
        Lssim = ssim(image, gt_image, size_average=False)

        psnr_frame = psnr(image, gt_image).mean()

        loss = (1.0 - opt.lambda_dssim) * Ll1 + opt.lambda_dssim * (1.0 - Lssim)
        loss = (loss).mean()

        
        loss.backward(retain_graph=True)

        with torch.no_grad():
            gaussians.optimizer.step()
            gaussians.optimizer.zero_grad(set_to_none = True)
            if psnr_frame > args.psnr_threshold:
                gaussians.optimizer_cam.step()
            gaussians.optimizer_cam.zero_grad(set_to_none = True)

        if not viewpoint_stack:

            viewpoint_stack = scene.getTestCameras().copy()
            # Render
            if (iteration - 1) == debug_from:
                pipe.debug = True
            bg = torch.rand((3), device="cuda") if opt.random_background else background

            while len(viewpoint_stack) > 0:

                viewpoint_cam = viewpoint_stack.pop(randint(0, len(viewpoint_stack)-1))
                # print(f"getting test cam pose frame {viewpoint_cam.colmap_id}")

                pose = gaussians.get_RT_test(viewpoint_cam.uid)

                render_pkg = render(viewpoint_cam, gaussians, pipe, bg, camera_pose=pose)
                image, viewspace_point_tensor, visibility_filter, radii = render_pkg["render"], render_pkg["viewspace_points"], render_pkg["visibility_filter"], render_pkg["radii"]

                # Loss
                gt_image = viewpoint_cam.original_image.cuda()
                gt_static_mask = 1 - viewpoint_cam.gt_dynamic_mask.to("cuda")
                image = image * gt_static_mask
                gt_image = gt_image * gt_static_mask

                Ll1 = l1_loss(image, gt_image, reduce=False)
                Lssim = ssim(image, gt_image, size_average=False)

                psnr_frame = psnr(image, gt_image).mean()

                loss = (1.0 - opt.lambda_dssim) * Ll1 + opt.lambda_dssim * (1.0 - Lssim)
                loss = (loss).mean()

                
                loss.backward(retain_graph=True)

                with torch.no_grad():
                    # gaussians.optimizer.step()
                    gaussians.optimizer.zero_grad(set_to_none = True)
                    if psnr_frame > args.psnr_threshold:
                        gaussians.optimizer_cam.step()
                    gaussians.optimizer_cam.zero_grad(set_to_none = True)

        iter_end.record()

        with torch.no_grad():

            # Progress bar
            ema_loss_for_log = 0.4 * loss.item() + 0.6 * ema_loss_for_log
            if iteration % 10 == 0:
                progress_bar.set_postfix({"Loss": f"{ema_loss_for_log:.{7}f}"})
                progress_bar.update(10)
            if iteration == opt.iterations:
                progress_bar.close()

            # Log and save
            training_report(iteration, Ll1, loss, l1_loss, iter_start.elapsed_time(iter_end), testing_iterations, scene, render, (pipe, background))
            if (iteration in saving_iterations):
                print("\n[ITER {}] Saving Gaussians".format(iteration))
                scene.save(iteration)

            # Densification
            # if iteration < opt.densify_until_iter:
                # Keep track of max radii in image-space for pruning
                # gaussians.max_radii2D[visibility_filter] = torch.max(gaussians.max_radii2D[visibility_filter], radii[visibility_filter])
                # gaussians.add_densification_stats(viewspace_point_tensor, visibility_filter)

                # if iteration > opt.densify_from_iter and iteration % opt.densification_interval == 0:
                #     size_threshold = 20 if iteration > opt.opacity_reset_interval else None
                #     gaussians.densify_and_prune(opt.densify_grad_threshold, 0.005, scene.cameras_extent, size_threshold)
                
                # if iteration % opt.opacity_reset_interval == 0 or (dataset.white_background and iteration == opt.densify_from_iter):
                #     gaussians.reset_opacity()

            # Optimizer step
            # if iteration < opt.iterations:


            if (iteration in checkpoint_iterations):
                print("\n[ITER {}] Saving Checkpoint".format(iteration))
                torch.save((gaussians.capture(), iteration), scene.model_path + "/chkpnt" + str(iteration) + ".pth")
                
    
def save_pose(path, quat_pose, train_cams, llffhold=2):
    output_poses=[]
    index_colmap = [cam.colmap_id for cam in train_cams]
    for quat_t in quat_pose:
        w2c = get_camera_from_tensor(quat_t)
        output_poses.append(w2c)

    return index_colmap, output_poses

def convert_colmap_to_quat(colmap_poses):
    quat_pose = []
    for pose in colmap_poses:
        rotation = Rotation.from_matrix(pose[:3, :3])
        quat = rotation.as_quat()
        translation = pose[:3, 3]
        quat_pose.append(np.concatenate([quat, translation]))
    return quat_pose

def c2w_to_tumpose(c2w):
    """
    Convert a camera-to-world matrix to a tuple of translation and rotation
    
    input: c2w: 4x4 matrix
    output: tuple of translation and rotation (x y z qw qx qy qz)
    """
    # convert input to numpy
    c2w = c2w
    c2w = np.linalg.inv(c2w)
    xyz = c2w[:3, -1]
    rot = Rotation.from_matrix(c2w[:3, :3])
    qx, qy, qz, qw = rot.as_quat()
    tum_pose = np.concatenate([xyz, [qw, qx, qy, qz]])
    return tum_pose

def tumpose_to_c2w(tum_pose):
    """
    Convert a tuple of translation and rotation to a camera-to-world matrix
    
    input: tum_pose: tuple of translation and rotation (x y z qw qx qy qz)
    output: c2w: 4x4 matrix
    """
    xyz = tum_pose[:3]
    qw, qx, qy, qz = tum_pose[3:]
    rot = Rotation.from_quat([qx, qy, qz, qw])
    c2w = np.eye(4)
    c2w[:3, :3] = rot.as_matrix()
    c2w[:3, -1] = xyz
    c2w = np.linalg.inv(c2w)
    return c2w

def training_report(iteration, Ll1, loss, l1_loss, elapsed, testing_iterations, scene : Scene, renderFunc, renderArgs):

    # Report test and samples of training set
    if iteration in testing_iterations:

        torch.cuda.empty_cache()
        validation_configs = ({'name': 'test', 'cameras' : scene.getTestCameras()},)

        for config in validation_configs:
            if config['cameras'] and len(config['cameras']) > 0:
                l1_test = 0.0
                psnr_test = 0.0
                lens = 0
                for idx, viewpoint in enumerate(config['cameras']):
                    if config['name']=="train":
                        pose = scene.gaussians.get_RT(viewpoint.uid)
                    else:
                        pose = scene.gaussians.get_RT_test(viewpoint.uid)
                    image = torch.clamp(renderFunc(viewpoint, scene.gaussians, *renderArgs, camera_pose=pose)["render"], 0.0, 1.0)
                    torchvision.utils.save_image(
                        image, os.path.join(scene.model_path, "{0:05d}".format(viewpoint.colmap_id) + ".png")
                    )
                    gt_image = torch.clamp(viewpoint.original_image.to("cuda"), 0.0, 1.0)

                    if hasattr(viewpoint, 'gt_dynamic_mask'):
                        gt_static_mask = 1 - viewpoint.gt_dynamic_mask.to("cuda")

                        np.save(os.path.join(scene.model_path, f"{viewpoint.colmap_id}_image.npy"), image.cpu().numpy())
                        np.save(os.path.join(scene.model_path, f"{viewpoint.colmap_id}_gt_image.npy"), gt_image.cpu().numpy())
                        np.save(os.path.join(scene.model_path, f"{viewpoint.colmap_id}_gt_static_mask.npy"), gt_static_mask.cpu().numpy())
                        
                        image = image * gt_static_mask
                        gt_image = gt_image * gt_static_mask
                        l1_test += l1_loss(image, gt_image).mean().double()
                        psnr_test += psnr(image, gt_image).mean().double()
                        # import matplotlib.pyplot as plt

                        # plt.figure(figsize=(10, 5))

                        # plt.subplot(1, 2, 1)
                        # plt.title('Predicted Image')
                        # plt.imshow(image.cpu().permute(1,2,0))
                        # plt.axis('off')

                        # plt.subplot(1, 2, 2)
                        # plt.title('Ground Truth Image')
                        # plt.imshow(gt_image.cpu().permute(1,2,0))
                        # plt.axis('off')

                        # plt.show()
                        lens += 1




                psnr_test /= lens
                l1_test /= lens          
                print("\n[ITER {}] Evaluating {}: L1 {} PSNR {}".format(iteration, config['name'], l1_test, psnr_test))
                with open(os.path.join(scene.model_path, f"{config['name']}_log.txt"), 'a') as log_file:
                    log_file.write(f"[ITER {iteration}] Evaluating {config['name']}: L1 {l1_test} PSNR {psnr_test}\n")

        torch.cuda.empty_cache()

if __name__ == "__main__":
    # Set up command line argument parser
    parser = ArgumentParser(description="Training script parameters")
    lp = ModelParams(parser)
    op = OptimizationParams(parser)
    pp = PipelineParams(parser)
    parser.add_argument('--ip', type=str, default="127.0.0.1")
    parser.add_argument('--port', type=int, default=6009)
    parser.add_argument('--debug_from', type=int, default=-1)
    parser.add_argument('--detect_anomaly', action='store_true', default=False)
    parser.add_argument("--test_iterations", nargs="+", type=int, default=[500, 800, 1000, 1500, 2000, 3000, 4000, 5000, 6000, 7_000, 30_000])
    parser.add_argument("--save_iterations", nargs="+", type=int, default=[])
    parser.add_argument("--quiet", action="store_true")
    parser.add_argument("--checkpoint_iterations", nargs="+", type=int, default=[])
    parser.add_argument("--start_checkpoint", type=str, default = None)
    parser.add_argument("--scene", type=str, default=None)
    parser.add_argument("--n_views", type=int, default=None)
    parser.add_argument("--get_video", action="store_true")
    parser.add_argument("--optim_pose", action="store_true")
    parser.add_argument("--gui", action="store_true")
    parser.add_argument("--eval_pose", action="store_true")
    parser.add_argument('--pose_eval_interval', type=int, default=100)
    parser.add_argument('--psnr_threshold', type=float, default=26)
    parser.add_argument('--gt_dynamic_mask', type=str, default='data/sintel/training/dynamic_label_perfect')
    parser.add_argument('--dataset', type=str, default='sintel')

    
    args = parser.parse_args(sys.argv[1:])
    args.save_iterations.append(args.iterations)

    lp.eval = True
    args.eval = True
    
    os.makedirs(args.model_path, exist_ok=True)
    
    print("Optimizing " + args.model_path)

    torch.autograd.set_detect_anomaly(args.detect_anomaly)

    training(lp.extract(args), op.extract(args), pp.extract(args), args.test_iterations, args.save_iterations, args.checkpoint_iterations, args.start_checkpoint, args.debug_from, args)

    # All done
    print("\nTraining complete.")