Spaces:
Running
Running
Upload 564 files
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- public/gpt-2/gpt2/config.json +31 -0
- public/gpt-2/gpt2/merges.txt +0 -0
- public/gpt-2/gpt2/pytorch_model.bin +3 -0
- public/gpt-2/gpt2/vocab.json +0 -0
- public/gpt-2/packaging-21.0.dist-info/LICENSE +3 -0
- public/gpt-2/packaging-21.0.dist-info/LICENSE.APACHE +177 -0
- public/gpt-2/packaging-21.0.dist-info/LICENSE.BSD +23 -0
- public/gpt-2/packaging-21.0.dist-info/METADATA +425 -0
- public/gpt-2/packaging-21.0.dist-info/RECORD +19 -0
- public/gpt-2/packaging-21.0.dist-info/WHEEL +5 -0
- public/gpt-2/packaging-21.0.dist-info/top_level.txt +1 -0
- public/gpt-2/packaging/__about__.py +26 -0
- public/gpt-2/packaging/__init__.py +25 -0
- public/gpt-2/packaging/_manylinux.py +301 -0
- public/gpt-2/packaging/_musllinux.py +136 -0
- public/gpt-2/packaging/_structures.py +67 -0
- public/gpt-2/packaging/markers.py +304 -0
- public/gpt-2/packaging/py.typed +0 -0
- public/gpt-2/packaging/requirements.py +146 -0
- public/gpt-2/packaging/specifiers.py +828 -0
- public/gpt-2/packaging/tags.py +484 -0
- public/gpt-2/packaging/utils.py +136 -0
- public/gpt-2/packaging/version.py +504 -0
- public/gpt-2/transformers-4.9.1.dist-info/LICENSE +203 -0
- public/gpt-2/transformers-4.9.1.dist-info/METADATA +547 -0
- public/gpt-2/transformers-4.9.1.dist-info/RECORD +532 -0
- public/gpt-2/transformers-4.9.1.dist-info/WHEEL +5 -0
- public/gpt-2/transformers-4.9.1.dist-info/entry_points.txt +3 -0
- public/gpt-2/transformers-4.9.1.dist-info/top_level.txt +1 -0
- public/gpt-2/transformers/__init__.py +0 -0
- public/gpt-2/transformers/__init__.py.orig +0 -0
- public/gpt-2/transformers/activations.py +113 -0
- public/gpt-2/transformers/activations_tf.py +94 -0
- public/gpt-2/transformers/benchmark/__init__.py +0 -0
- public/gpt-2/transformers/benchmark/benchmark.py +267 -0
- public/gpt-2/transformers/benchmark/benchmark_args.py +115 -0
- public/gpt-2/transformers/benchmark/benchmark_args_tf.py +136 -0
- public/gpt-2/transformers/benchmark/benchmark_args_utils.py +145 -0
- public/gpt-2/transformers/benchmark/benchmark_tf.py +294 -0
- public/gpt-2/transformers/benchmark/benchmark_utils.py +909 -0
- public/gpt-2/transformers/commands/__init__.py +27 -0
- public/gpt-2/transformers/commands/add_new_model.py +228 -0
- public/gpt-2/transformers/commands/convert.py +179 -0
- public/gpt-2/transformers/commands/download.py +46 -0
- public/gpt-2/transformers/commands/env.py +89 -0
- public/gpt-2/transformers/commands/lfs.py +227 -0
- public/gpt-2/transformers/commands/run.py +112 -0
- public/gpt-2/transformers/commands/serving.py +231 -0
- public/gpt-2/transformers/commands/train.py +160 -0
- public/gpt-2/transformers/commands/transformers_cli.py +55 -0
public/gpt-2/gpt2/config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"activation_function": "gelu_new",
|
3 |
+
"architectures": [
|
4 |
+
"GPT2LMHeadModel"
|
5 |
+
],
|
6 |
+
"attn_pdrop": 0.1,
|
7 |
+
"bos_token_id": 50256,
|
8 |
+
"embd_pdrop": 0.1,
|
9 |
+
"eos_token_id": 50256,
|
10 |
+
"initializer_range": 0.02,
|
11 |
+
"layer_norm_epsilon": 1e-05,
|
12 |
+
"model_type": "gpt2",
|
13 |
+
"n_ctx": 1024,
|
14 |
+
"n_embd": 768,
|
15 |
+
"n_head": 12,
|
16 |
+
"n_layer": 12,
|
17 |
+
"n_positions": 1024,
|
18 |
+
"resid_pdrop": 0.1,
|
19 |
+
"summary_activation": null,
|
20 |
+
"summary_first_dropout": 0.1,
|
21 |
+
"summary_proj_to_labels": true,
|
22 |
+
"summary_type": "cls_index",
|
23 |
+
"summary_use_proj": true,
|
24 |
+
"task_specific_params": {
|
25 |
+
"text-generation": {
|
26 |
+
"do_sample": true,
|
27 |
+
"max_length": 50
|
28 |
+
}
|
29 |
+
},
|
30 |
+
"vocab_size": 50257
|
31 |
+
}
|
public/gpt-2/gpt2/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
public/gpt-2/gpt2/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7c5d3f4b8b76583b422fcb9189ad6c89d5d97a094541ce8932dce3ecabde1421
|
3 |
+
size 548118077
|
public/gpt-2/gpt2/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
public/gpt-2/packaging-21.0.dist-info/LICENSE
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
This software is made available under the terms of *either* of the licenses
|
2 |
+
found in LICENSE.APACHE or LICENSE.BSD. Contributions to this software is made
|
3 |
+
under the terms of *both* these licenses.
|
public/gpt-2/packaging-21.0.dist-info/LICENSE.APACHE
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
Apache License
|
3 |
+
Version 2.0, January 2004
|
4 |
+
http://www.apache.org/licenses/
|
5 |
+
|
6 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
7 |
+
|
8 |
+
1. Definitions.
|
9 |
+
|
10 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
11 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
12 |
+
|
13 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
14 |
+
the copyright owner that is granting the License.
|
15 |
+
|
16 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
17 |
+
other entities that control, are controlled by, or are under common
|
18 |
+
control with that entity. For the purposes of this definition,
|
19 |
+
"control" means (i) the power, direct or indirect, to cause the
|
20 |
+
direction or management of such entity, whether by contract or
|
21 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
22 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
23 |
+
|
24 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
25 |
+
exercising permissions granted by this License.
|
26 |
+
|
27 |
+
"Source" form shall mean the preferred form for making modifications,
|
28 |
+
including but not limited to software source code, documentation
|
29 |
+
source, and configuration files.
|
30 |
+
|
31 |
+
"Object" form shall mean any form resulting from mechanical
|
32 |
+
transformation or translation of a Source form, including but
|
33 |
+
not limited to compiled object code, generated documentation,
|
34 |
+
and conversions to other media types.
|
35 |
+
|
36 |
+
"Work" shall mean the work of authorship, whether in Source or
|
37 |
+
Object form, made available under the License, as indicated by a
|
38 |
+
copyright notice that is included in or attached to the work
|
39 |
+
(an example is provided in the Appendix below).
|
40 |
+
|
41 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
42 |
+
form, that is based on (or derived from) the Work and for which the
|
43 |
+
editorial revisions, annotations, elaborations, or other modifications
|
44 |
+
represent, as a whole, an original work of authorship. For the purposes
|
45 |
+
of this License, Derivative Works shall not include works that remain
|
46 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
47 |
+
the Work and Derivative Works thereof.
|
48 |
+
|
49 |
+
"Contribution" shall mean any work of authorship, including
|
50 |
+
the original version of the Work and any modifications or additions
|
51 |
+
to that Work or Derivative Works thereof, that is intentionally
|
52 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
53 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
54 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
55 |
+
means any form of electronic, verbal, or written communication sent
|
56 |
+
to the Licensor or its representatives, including but not limited to
|
57 |
+
communication on electronic mailing lists, source code control systems,
|
58 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
59 |
+
Licensor for the purpose of discussing and improving the Work, but
|
60 |
+
excluding communication that is conspicuously marked or otherwise
|
61 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
62 |
+
|
63 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
64 |
+
on behalf of whom a Contribution has been received by Licensor and
|
65 |
+
subsequently incorporated within the Work.
|
66 |
+
|
67 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
68 |
+
this License, each Contributor hereby grants to You a perpetual,
|
69 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
70 |
+
copyright license to reproduce, prepare Derivative Works of,
|
71 |
+
publicly display, publicly perform, sublicense, and distribute the
|
72 |
+
Work and such Derivative Works in Source or Object form.
|
73 |
+
|
74 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
75 |
+
this License, each Contributor hereby grants to You a perpetual,
|
76 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
77 |
+
(except as stated in this section) patent license to make, have made,
|
78 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
79 |
+
where such license applies only to those patent claims licensable
|
80 |
+
by such Contributor that are necessarily infringed by their
|
81 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
82 |
+
with the Work to which such Contribution(s) was submitted. If You
|
83 |
+
institute patent litigation against any entity (including a
|
84 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
85 |
+
or a Contribution incorporated within the Work constitutes direct
|
86 |
+
or contributory patent infringement, then any patent licenses
|
87 |
+
granted to You under this License for that Work shall terminate
|
88 |
+
as of the date such litigation is filed.
|
89 |
+
|
90 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
91 |
+
Work or Derivative Works thereof in any medium, with or without
|
92 |
+
modifications, and in Source or Object form, provided that You
|
93 |
+
meet the following conditions:
|
94 |
+
|
95 |
+
(a) You must give any other recipients of the Work or
|
96 |
+
Derivative Works a copy of this License; and
|
97 |
+
|
98 |
+
(b) You must cause any modified files to carry prominent notices
|
99 |
+
stating that You changed the files; and
|
100 |
+
|
101 |
+
(c) You must retain, in the Source form of any Derivative Works
|
102 |
+
that You distribute, all copyright, patent, trademark, and
|
103 |
+
attribution notices from the Source form of the Work,
|
104 |
+
excluding those notices that do not pertain to any part of
|
105 |
+
the Derivative Works; and
|
106 |
+
|
107 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
108 |
+
distribution, then any Derivative Works that You distribute must
|
109 |
+
include a readable copy of the attribution notices contained
|
110 |
+
within such NOTICE file, excluding those notices that do not
|
111 |
+
pertain to any part of the Derivative Works, in at least one
|
112 |
+
of the following places: within a NOTICE text file distributed
|
113 |
+
as part of the Derivative Works; within the Source form or
|
114 |
+
documentation, if provided along with the Derivative Works; or,
|
115 |
+
within a display generated by the Derivative Works, if and
|
116 |
+
wherever such third-party notices normally appear. The contents
|
117 |
+
of the NOTICE file are for informational purposes only and
|
118 |
+
do not modify the License. You may add Your own attribution
|
119 |
+
notices within Derivative Works that You distribute, alongside
|
120 |
+
or as an addendum to the NOTICE text from the Work, provided
|
121 |
+
that such additional attribution notices cannot be construed
|
122 |
+
as modifying the License.
|
123 |
+
|
124 |
+
You may add Your own copyright statement to Your modifications and
|
125 |
+
may provide additional or different license terms and conditions
|
126 |
+
for use, reproduction, or distribution of Your modifications, or
|
127 |
+
for any such Derivative Works as a whole, provided Your use,
|
128 |
+
reproduction, and distribution of the Work otherwise complies with
|
129 |
+
the conditions stated in this License.
|
130 |
+
|
131 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
132 |
+
any Contribution intentionally submitted for inclusion in the Work
|
133 |
+
by You to the Licensor shall be under the terms and conditions of
|
134 |
+
this License, without any additional terms or conditions.
|
135 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
136 |
+
the terms of any separate license agreement you may have executed
|
137 |
+
with Licensor regarding such Contributions.
|
138 |
+
|
139 |
+
6. Trademarks. This License does not grant permission to use the trade
|
140 |
+
names, trademarks, service marks, or product names of the Licensor,
|
141 |
+
except as required for reasonable and customary use in describing the
|
142 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
143 |
+
|
144 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
145 |
+
agreed to in writing, Licensor provides the Work (and each
|
146 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
147 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
148 |
+
implied, including, without limitation, any warranties or conditions
|
149 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
150 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
151 |
+
appropriateness of using or redistributing the Work and assume any
|
152 |
+
risks associated with Your exercise of permissions under this License.
|
153 |
+
|
154 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
155 |
+
whether in tort (including negligence), contract, or otherwise,
|
156 |
+
unless required by applicable law (such as deliberate and grossly
|
157 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
158 |
+
liable to You for damages, including any direct, indirect, special,
|
159 |
+
incidental, or consequential damages of any character arising as a
|
160 |
+
result of this License or out of the use or inability to use the
|
161 |
+
Work (including but not limited to damages for loss of goodwill,
|
162 |
+
work stoppage, computer failure or malfunction, or any and all
|
163 |
+
other commercial damages or losses), even if such Contributor
|
164 |
+
has been advised of the possibility of such damages.
|
165 |
+
|
166 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
167 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
168 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
169 |
+
or other liability obligations and/or rights consistent with this
|
170 |
+
License. However, in accepting such obligations, You may act only
|
171 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
172 |
+
of any other Contributor, and only if You agree to indemnify,
|
173 |
+
defend, and hold each Contributor harmless for any liability
|
174 |
+
incurred by, or claims asserted against, such Contributor by reason
|
175 |
+
of your accepting any such warranty or additional liability.
|
176 |
+
|
177 |
+
END OF TERMS AND CONDITIONS
|
public/gpt-2/packaging-21.0.dist-info/LICENSE.BSD
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Copyright (c) Donald Stufft and individual contributors.
|
2 |
+
All rights reserved.
|
3 |
+
|
4 |
+
Redistribution and use in source and binary forms, with or without
|
5 |
+
modification, are permitted provided that the following conditions are met:
|
6 |
+
|
7 |
+
1. Redistributions of source code must retain the above copyright notice,
|
8 |
+
this list of conditions and the following disclaimer.
|
9 |
+
|
10 |
+
2. Redistributions in binary form must reproduce the above copyright
|
11 |
+
notice, this list of conditions and the following disclaimer in the
|
12 |
+
documentation and/or other materials provided with the distribution.
|
13 |
+
|
14 |
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
15 |
+
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
16 |
+
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
17 |
+
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
18 |
+
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
19 |
+
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
20 |
+
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
21 |
+
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
22 |
+
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
23 |
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
public/gpt-2/packaging-21.0.dist-info/METADATA
ADDED
@@ -0,0 +1,425 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Metadata-Version: 2.1
|
2 |
+
Name: packaging
|
3 |
+
Version: 21.0
|
4 |
+
Summary: Core utilities for Python packages
|
5 |
+
Home-page: https://github.com/pypa/packaging
|
6 |
+
Author: Donald Stufft and individual contributors
|
7 |
+
Author-email: [email protected]
|
8 |
+
License: BSD-2-Clause or Apache-2.0
|
9 |
+
Platform: UNKNOWN
|
10 |
+
Classifier: Development Status :: 5 - Production/Stable
|
11 |
+
Classifier: Intended Audience :: Developers
|
12 |
+
Classifier: License :: OSI Approved :: Apache Software License
|
13 |
+
Classifier: License :: OSI Approved :: BSD License
|
14 |
+
Classifier: Programming Language :: Python
|
15 |
+
Classifier: Programming Language :: Python :: 3
|
16 |
+
Classifier: Programming Language :: Python :: 3 :: Only
|
17 |
+
Classifier: Programming Language :: Python :: 3.6
|
18 |
+
Classifier: Programming Language :: Python :: 3.7
|
19 |
+
Classifier: Programming Language :: Python :: 3.8
|
20 |
+
Classifier: Programming Language :: Python :: 3.9
|
21 |
+
Classifier: Programming Language :: Python :: Implementation :: CPython
|
22 |
+
Classifier: Programming Language :: Python :: Implementation :: PyPy
|
23 |
+
Requires-Python: >=3.6
|
24 |
+
Description-Content-Type: text/x-rst
|
25 |
+
License-File: LICENSE
|
26 |
+
License-File: LICENSE.APACHE
|
27 |
+
License-File: LICENSE.BSD
|
28 |
+
Requires-Dist: pyparsing (>=2.0.2)
|
29 |
+
|
30 |
+
packaging
|
31 |
+
=========
|
32 |
+
|
33 |
+
.. start-intro
|
34 |
+
|
35 |
+
Reusable core utilities for various Python Packaging
|
36 |
+
`interoperability specifications <https://packaging.python.org/specifications/>`_.
|
37 |
+
|
38 |
+
This library provides utilities that implement the interoperability
|
39 |
+
specifications which have clearly one correct behaviour (eg: :pep:`440`)
|
40 |
+
or benefit greatly from having a single shared implementation (eg: :pep:`425`).
|
41 |
+
|
42 |
+
.. end-intro
|
43 |
+
|
44 |
+
The ``packaging`` project includes the following: version handling, specifiers,
|
45 |
+
markers, requirements, tags, utilities.
|
46 |
+
|
47 |
+
Documentation
|
48 |
+
-------------
|
49 |
+
|
50 |
+
The `documentation`_ provides information and the API for the following:
|
51 |
+
|
52 |
+
- Version Handling
|
53 |
+
- Specifiers
|
54 |
+
- Markers
|
55 |
+
- Requirements
|
56 |
+
- Tags
|
57 |
+
- Utilities
|
58 |
+
|
59 |
+
Installation
|
60 |
+
------------
|
61 |
+
|
62 |
+
Use ``pip`` to install these utilities::
|
63 |
+
|
64 |
+
pip install packaging
|
65 |
+
|
66 |
+
Discussion
|
67 |
+
----------
|
68 |
+
|
69 |
+
If you run into bugs, you can file them in our `issue tracker`_.
|
70 |
+
|
71 |
+
You can also join ``#pypa`` on Freenode to ask questions or get involved.
|
72 |
+
|
73 |
+
|
74 |
+
.. _`documentation`: https://packaging.pypa.io/
|
75 |
+
.. _`issue tracker`: https://github.com/pypa/packaging/issues
|
76 |
+
|
77 |
+
|
78 |
+
Code of Conduct
|
79 |
+
---------------
|
80 |
+
|
81 |
+
Everyone interacting in the packaging project's codebases, issue trackers, chat
|
82 |
+
rooms, and mailing lists is expected to follow the `PSF Code of Conduct`_.
|
83 |
+
|
84 |
+
.. _PSF Code of Conduct: https://github.com/pypa/.github/blob/main/CODE_OF_CONDUCT.md
|
85 |
+
|
86 |
+
Contributing
|
87 |
+
------------
|
88 |
+
|
89 |
+
The ``CONTRIBUTING.rst`` file outlines how to contribute to this project as
|
90 |
+
well as how to report a potential security issue. The documentation for this
|
91 |
+
project also covers information about `project development`_ and `security`_.
|
92 |
+
|
93 |
+
.. _`project development`: https://packaging.pypa.io/en/latest/development/
|
94 |
+
.. _`security`: https://packaging.pypa.io/en/latest/security/
|
95 |
+
|
96 |
+
Project History
|
97 |
+
---------------
|
98 |
+
|
99 |
+
Please review the ``CHANGELOG.rst`` file or the `Changelog documentation`_ for
|
100 |
+
recent changes and project history.
|
101 |
+
|
102 |
+
.. _`Changelog documentation`: https://packaging.pypa.io/en/latest/changelog/
|
103 |
+
|
104 |
+
Changelog
|
105 |
+
---------
|
106 |
+
|
107 |
+
21.0 - 2021-07-03
|
108 |
+
~~~~~~~~~~~~~~~~~
|
109 |
+
|
110 |
+
* `packaging` is now only compatible with Python 3.6 and above.
|
111 |
+
* Add support for zip files in ``parse_sdist_filename`` (`#429 <https://github.com/pypa/packaging/issues/429>`__)
|
112 |
+
|
113 |
+
20.9 - 2021-01-29
|
114 |
+
~~~~~~~~~~~~~~~~~
|
115 |
+
|
116 |
+
* Run `isort <https://pypi.org/project/isort/>`_ over the code base (`#377 <https://github.com/pypa/packaging/issues/377>`__)
|
117 |
+
* Add support for the ``macosx_10_*_universal2`` platform tags (`#379 <https://github.com/pypa/packaging/issues/379>`__)
|
118 |
+
* Introduce ``packaging.utils.parse_wheel_filename()`` and ``parse_sdist_filename()``
|
119 |
+
(`#387 <https://github.com/pypa/packaging/issues/387>`__ and `#389 <https://github.com/pypa/packaging/issues/389>`__)
|
120 |
+
|
121 |
+
20.8 - 2020-12-11
|
122 |
+
~~~~~~~~~~~~~~~~~
|
123 |
+
|
124 |
+
* Revert back to setuptools for compatibility purposes for some Linux distros (`#363 <https://github.com/pypa/packaging/issues/363>`__)
|
125 |
+
* Do not insert an underscore in wheel tags when the interpreter version number
|
126 |
+
is more than 2 digits (`#372 <https://github.com/pypa/packaging/issues/372>`__)
|
127 |
+
|
128 |
+
20.7 - 2020-11-28
|
129 |
+
~~~~~~~~~~~~~~~~~
|
130 |
+
|
131 |
+
No unreleased changes.
|
132 |
+
|
133 |
+
20.6 - 2020-11-28
|
134 |
+
~~~~~~~~~~~~~~~~~
|
135 |
+
|
136 |
+
.. note:: This release was subsequently yanked, and these changes were included in 20.7.
|
137 |
+
|
138 |
+
* Fix flit configuration, to include LICENSE files (`#357 <https://github.com/pypa/packaging/issues/357>`__)
|
139 |
+
* Make `intel` a recognized CPU architecture for the `universal` macOS platform tag (`#361 <https://github.com/pypa/packaging/issues/361>`__)
|
140 |
+
* Add some missing type hints to `packaging.requirements` (issue:`350`)
|
141 |
+
|
142 |
+
20.5 - 2020-11-27
|
143 |
+
~~~~~~~~~~~~~~~~~
|
144 |
+
|
145 |
+
* Officially support Python 3.9 (`#343 <https://github.com/pypa/packaging/issues/343>`__)
|
146 |
+
* Deprecate the ``LegacyVersion`` and ``LegacySpecifier`` classes (`#321 <https://github.com/pypa/packaging/issues/321>`__)
|
147 |
+
* Handle ``OSError`` on non-dynamic executables when attempting to resolve
|
148 |
+
the glibc version string.
|
149 |
+
|
150 |
+
20.4 - 2020-05-19
|
151 |
+
~~~~~~~~~~~~~~~~~
|
152 |
+
|
153 |
+
* Canonicalize version before comparing specifiers. (`#282 <https://github.com/pypa/packaging/issues/282>`__)
|
154 |
+
* Change type hint for ``canonicalize_name`` to return
|
155 |
+
``packaging.utils.NormalizedName``.
|
156 |
+
This enables the use of static typing tools (like mypy) to detect mixing of
|
157 |
+
normalized and un-normalized names.
|
158 |
+
|
159 |
+
20.3 - 2020-03-05
|
160 |
+
~~~~~~~~~~~~~~~~~
|
161 |
+
|
162 |
+
* Fix changelog for 20.2.
|
163 |
+
|
164 |
+
20.2 - 2020-03-05
|
165 |
+
~~~~~~~~~~~~~~~~~
|
166 |
+
|
167 |
+
* Fix a bug that caused a 32-bit OS that runs on a 64-bit ARM CPU (e.g. ARM-v8,
|
168 |
+
aarch64), to report the wrong bitness.
|
169 |
+
|
170 |
+
20.1 - 2020-01-24
|
171 |
+
~~~~~~~~~~~~~~~~~~~
|
172 |
+
|
173 |
+
* Fix a bug caused by reuse of an exhausted iterator. (`#257 <https://github.com/pypa/packaging/issues/257>`__)
|
174 |
+
|
175 |
+
20.0 - 2020-01-06
|
176 |
+
~~~~~~~~~~~~~~~~~
|
177 |
+
|
178 |
+
* Add type hints (`#191 <https://github.com/pypa/packaging/issues/191>`__)
|
179 |
+
|
180 |
+
* Add proper trove classifiers for PyPy support (`#198 <https://github.com/pypa/packaging/issues/198>`__)
|
181 |
+
|
182 |
+
* Scale back depending on ``ctypes`` for manylinux support detection (`#171 <https://github.com/pypa/packaging/issues/171>`__)
|
183 |
+
|
184 |
+
* Use ``sys.implementation.name`` where appropriate for ``packaging.tags`` (`#193 <https://github.com/pypa/packaging/issues/193>`__)
|
185 |
+
|
186 |
+
* Expand upon the API provided by ``packaging.tags``: ``interpreter_name()``, ``mac_platforms()``, ``compatible_tags()``, ``cpython_tags()``, ``generic_tags()`` (`#187 <https://github.com/pypa/packaging/issues/187>`__)
|
187 |
+
|
188 |
+
* Officially support Python 3.8 (`#232 <https://github.com/pypa/packaging/issues/232>`__)
|
189 |
+
|
190 |
+
* Add ``major``, ``minor``, and ``micro`` aliases to ``packaging.version.Version`` (`#226 <https://github.com/pypa/packaging/issues/226>`__)
|
191 |
+
|
192 |
+
* Properly mark ``packaging`` has being fully typed by adding a `py.typed` file (`#226 <https://github.com/pypa/packaging/issues/226>`__)
|
193 |
+
|
194 |
+
19.2 - 2019-09-18
|
195 |
+
~~~~~~~~~~~~~~~~~
|
196 |
+
|
197 |
+
* Remove dependency on ``attrs`` (`#178 <https://github.com/pypa/packaging/issues/178>`__, `#179 <https://github.com/pypa/packaging/issues/179>`__)
|
198 |
+
|
199 |
+
* Use appropriate fallbacks for CPython ABI tag (`#181 <https://github.com/pypa/packaging/issues/181>`__, `#185 <https://github.com/pypa/packaging/issues/185>`__)
|
200 |
+
|
201 |
+
* Add manylinux2014 support (`#186 <https://github.com/pypa/packaging/issues/186>`__)
|
202 |
+
|
203 |
+
* Improve ABI detection (`#181 <https://github.com/pypa/packaging/issues/181>`__)
|
204 |
+
|
205 |
+
* Properly handle debug wheels for Python 3.8 (`#172 <https://github.com/pypa/packaging/issues/172>`__)
|
206 |
+
|
207 |
+
* Improve detection of debug builds on Windows (`#194 <https://github.com/pypa/packaging/issues/194>`__)
|
208 |
+
|
209 |
+
19.1 - 2019-07-30
|
210 |
+
~~~~~~~~~~~~~~~~~
|
211 |
+
|
212 |
+
* Add the ``packaging.tags`` module. (`#156 <https://github.com/pypa/packaging/issues/156>`__)
|
213 |
+
|
214 |
+
* Correctly handle two-digit versions in ``python_version`` (`#119 <https://github.com/pypa/packaging/issues/119>`__)
|
215 |
+
|
216 |
+
|
217 |
+
19.0 - 2019-01-20
|
218 |
+
~~~~~~~~~~~~~~~~~
|
219 |
+
|
220 |
+
* Fix string representation of PEP 508 direct URL requirements with markers.
|
221 |
+
|
222 |
+
* Better handling of file URLs
|
223 |
+
|
224 |
+
This allows for using ``file:///absolute/path``, which was previously
|
225 |
+
prevented due to the missing ``netloc``.
|
226 |
+
|
227 |
+
This allows for all file URLs that ``urlunparse`` turns back into the
|
228 |
+
original URL to be valid.
|
229 |
+
|
230 |
+
|
231 |
+
18.0 - 2018-09-26
|
232 |
+
~~~~~~~~~~~~~~~~~
|
233 |
+
|
234 |
+
* Improve error messages when invalid requirements are given. (`#129 <https://github.com/pypa/packaging/issues/129>`__)
|
235 |
+
|
236 |
+
|
237 |
+
17.1 - 2017-02-28
|
238 |
+
~~~~~~~~~~~~~~~~~
|
239 |
+
|
240 |
+
* Fix ``utils.canonicalize_version`` when supplying non PEP 440 versions.
|
241 |
+
|
242 |
+
|
243 |
+
17.0 - 2017-02-28
|
244 |
+
~~~~~~~~~~~~~~~~~
|
245 |
+
|
246 |
+
* Drop support for python 2.6, 3.2, and 3.3.
|
247 |
+
|
248 |
+
* Define minimal pyparsing version to 2.0.2 (`#91 <https://github.com/pypa/packaging/issues/91>`__).
|
249 |
+
|
250 |
+
* Add ``epoch``, ``release``, ``pre``, ``dev``, and ``post`` attributes to
|
251 |
+
``Version`` and ``LegacyVersion`` (`#34 <https://github.com/pypa/packaging/issues/34>`__).
|
252 |
+
|
253 |
+
* Add ``Version().is_devrelease`` and ``LegacyVersion().is_devrelease`` to
|
254 |
+
make it easy to determine if a release is a development release.
|
255 |
+
|
256 |
+
* Add ``utils.canonicalize_version`` to canonicalize version strings or
|
257 |
+
``Version`` instances (`#121 <https://github.com/pypa/packaging/issues/121>`__).
|
258 |
+
|
259 |
+
|
260 |
+
16.8 - 2016-10-29
|
261 |
+
~~~~~~~~~~~~~~~~~
|
262 |
+
|
263 |
+
* Fix markers that utilize ``in`` so that they render correctly.
|
264 |
+
|
265 |
+
* Fix an erroneous test on Python RC releases.
|
266 |
+
|
267 |
+
|
268 |
+
16.7 - 2016-04-23
|
269 |
+
~~~~~~~~~~~~~~~~~
|
270 |
+
|
271 |
+
* Add support for the deprecated ``python_implementation`` marker which was
|
272 |
+
an undocumented setuptools marker in addition to the newer markers.
|
273 |
+
|
274 |
+
|
275 |
+
16.6 - 2016-03-29
|
276 |
+
~~~~~~~~~~~~~~~~~
|
277 |
+
|
278 |
+
* Add support for the deprecated, PEP 345 environment markers in addition to
|
279 |
+
the newer markers.
|
280 |
+
|
281 |
+
|
282 |
+
16.5 - 2016-02-26
|
283 |
+
~~~~~~~~~~~~~~~~~
|
284 |
+
|
285 |
+
* Fix a regression in parsing requirements with whitespaces between the comma
|
286 |
+
separators.
|
287 |
+
|
288 |
+
|
289 |
+
16.4 - 2016-02-22
|
290 |
+
~~~~~~~~~~~~~~~~~
|
291 |
+
|
292 |
+
* Fix a regression in parsing requirements like ``foo (==4)``.
|
293 |
+
|
294 |
+
|
295 |
+
16.3 - 2016-02-21
|
296 |
+
~~~~~~~~~~~~~~~~~
|
297 |
+
|
298 |
+
* Fix a bug where ``packaging.requirements:Requirement`` was overly strict when
|
299 |
+
matching legacy requirements.
|
300 |
+
|
301 |
+
|
302 |
+
16.2 - 2016-02-09
|
303 |
+
~~~~~~~~~~~~~~~~~
|
304 |
+
|
305 |
+
* Add a function that implements the name canonicalization from PEP 503.
|
306 |
+
|
307 |
+
|
308 |
+
16.1 - 2016-02-07
|
309 |
+
~~~~~~~~~~~~~~~~~
|
310 |
+
|
311 |
+
* Implement requirement specifiers from PEP 508.
|
312 |
+
|
313 |
+
|
314 |
+
16.0 - 2016-01-19
|
315 |
+
~~~~~~~~~~~~~~~~~
|
316 |
+
|
317 |
+
* Relicense so that packaging is available under *either* the Apache License,
|
318 |
+
Version 2.0 or a 2 Clause BSD license.
|
319 |
+
|
320 |
+
* Support installation of packaging when only distutils is available.
|
321 |
+
|
322 |
+
* Fix ``==`` comparison when there is a prefix and a local version in play.
|
323 |
+
(`#41 <https://github.com/pypa/packaging/issues/41>`__).
|
324 |
+
|
325 |
+
* Implement environment markers from PEP 508.
|
326 |
+
|
327 |
+
|
328 |
+
15.3 - 2015-08-01
|
329 |
+
~~~~~~~~~~~~~~~~~
|
330 |
+
|
331 |
+
* Normalize post-release spellings for rev/r prefixes. `#35 <https://github.com/pypa/packaging/issues/35>`__
|
332 |
+
|
333 |
+
|
334 |
+
15.2 - 2015-05-13
|
335 |
+
~~~~~~~~~~~~~~~~~
|
336 |
+
|
337 |
+
* Fix an error where the arbitrary specifier (``===``) was not correctly
|
338 |
+
allowing pre-releases when it was being used.
|
339 |
+
|
340 |
+
* Expose the specifier and version parts through properties on the
|
341 |
+
``Specifier`` classes.
|
342 |
+
|
343 |
+
* Allow iterating over the ``SpecifierSet`` to get access to all of the
|
344 |
+
``Specifier`` instances.
|
345 |
+
|
346 |
+
* Allow testing if a version is contained within a specifier via the ``in``
|
347 |
+
operator.
|
348 |
+
|
349 |
+
|
350 |
+
15.1 - 2015-04-13
|
351 |
+
~~~~~~~~~~~~~~~~~
|
352 |
+
|
353 |
+
* Fix a logic error that was causing inconsistent answers about whether or not
|
354 |
+
a pre-release was contained within a ``SpecifierSet`` or not.
|
355 |
+
|
356 |
+
|
357 |
+
15.0 - 2015-01-02
|
358 |
+
~~~~~~~~~~~~~~~~~
|
359 |
+
|
360 |
+
* Add ``Version().is_postrelease`` and ``LegacyVersion().is_postrelease`` to
|
361 |
+
make it easy to determine if a release is a post release.
|
362 |
+
|
363 |
+
* Add ``Version().base_version`` and ``LegacyVersion().base_version`` to make
|
364 |
+
it easy to get the public version without any pre or post release markers.
|
365 |
+
|
366 |
+
* Support the update to PEP 440 which removed the implied ``!=V.*`` when using
|
367 |
+
either ``>V`` or ``<V`` and which instead special cased the handling of
|
368 |
+
pre-releases, post-releases, and local versions when using ``>V`` or ``<V``.
|
369 |
+
|
370 |
+
|
371 |
+
14.5 - 2014-12-17
|
372 |
+
~~~~~~~~~~~~~~~~~
|
373 |
+
|
374 |
+
* Normalize release candidates as ``rc`` instead of ``c``.
|
375 |
+
|
376 |
+
* Expose the ``VERSION_PATTERN`` constant, a regular expression matching
|
377 |
+
a valid version.
|
378 |
+
|
379 |
+
|
380 |
+
14.4 - 2014-12-15
|
381 |
+
~~~~~~~~~~~~~~~~~
|
382 |
+
|
383 |
+
* Ensure that versions are normalized before comparison when used in a
|
384 |
+
specifier with a less than (``<``) or greater than (``>``) operator.
|
385 |
+
|
386 |
+
|
387 |
+
14.3 - 2014-11-19
|
388 |
+
~~~~~~~~~~~~~~~~~
|
389 |
+
|
390 |
+
* **BACKWARDS INCOMPATIBLE** Refactor specifier support so that it can sanely
|
391 |
+
handle legacy specifiers as well as PEP 440 specifiers.
|
392 |
+
|
393 |
+
* **BACKWARDS INCOMPATIBLE** Move the specifier support out of
|
394 |
+
``packaging.version`` into ``packaging.specifiers``.
|
395 |
+
|
396 |
+
|
397 |
+
14.2 - 2014-09-10
|
398 |
+
~~~~~~~~~~~~~~~~~
|
399 |
+
|
400 |
+
* Add prerelease support to ``Specifier``.
|
401 |
+
* Remove the ability to do ``item in Specifier()`` and replace it with
|
402 |
+
``Specifier().contains(item)`` in order to allow flags that signal if a
|
403 |
+
prerelease should be accepted or not.
|
404 |
+
* Add a method ``Specifier().filter()`` which will take an iterable and returns
|
405 |
+
an iterable with items that do not match the specifier filtered out.
|
406 |
+
|
407 |
+
|
408 |
+
14.1 - 2014-09-08
|
409 |
+
~~~~~~~~~~~~~~~~~
|
410 |
+
|
411 |
+
* Allow ``LegacyVersion`` and ``Version`` to be sorted together.
|
412 |
+
* Add ``packaging.version.parse()`` to enable easily parsing a version string
|
413 |
+
as either a ``Version`` or a ``LegacyVersion`` depending on it's PEP 440
|
414 |
+
validity.
|
415 |
+
|
416 |
+
|
417 |
+
14.0 - 2014-09-05
|
418 |
+
~~~~~~~~~~~~~~~~~
|
419 |
+
|
420 |
+
* Initial release.
|
421 |
+
|
422 |
+
|
423 |
+
.. _`master`: https://github.com/pypa/packaging/
|
424 |
+
|
425 |
+
|
public/gpt-2/packaging-21.0.dist-info/RECORD
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
packaging/__about__.py,sha256=p_OQloqH2saadcbUQmWEsWK857dI6_ff5E3aSiCqGFA,661
|
2 |
+
packaging/__init__.py,sha256=b9Kk5MF7KxhhLgcDmiUWukN-LatWFxPdNug0joPhHSk,497
|
3 |
+
packaging/_manylinux.py,sha256=XcbiXB-qcjv3bcohp6N98TMpOP4_j3m-iOA8ptK2GWY,11488
|
4 |
+
packaging/_musllinux.py,sha256=z5yeG1ygOPx4uUyLdqj-p8Dk5UBb5H_b0NIjW9yo8oA,4378
|
5 |
+
packaging/_structures.py,sha256=TMiAgFbdUOPmIfDIfiHc3KFhSJ8kMjof2QS5I-2NyQ8,1629
|
6 |
+
packaging/markers.py,sha256=Fygi3_eZnjQ-3VJizW5AhI5wvo0Hb6RMk4DidsKpOC0,8475
|
7 |
+
packaging/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
8 |
+
packaging/requirements.py,sha256=rjaGRCMepZS1mlYMjJ5Qh6rfq3gtsCRQUQmftGZ_bu8,4664
|
9 |
+
packaging/specifiers.py,sha256=MZ-fYcNL3u7pNrt-6g2EQO7AbRXkjc-SPEYwXMQbLmc,30964
|
10 |
+
packaging/tags.py,sha256=akIerYw8W0sz4OW9HHozgawWnbt2GGOPm3sviW0jowY,15714
|
11 |
+
packaging/utils.py,sha256=dJjeat3BS-TYn1RrUFVwufUMasbtzLfYRoy_HXENeFQ,4200
|
12 |
+
packaging/version.py,sha256=_fLRNrFrxYcHVfyo8vk9j8s6JM8N_xsSxVFr6RJyco8,14665
|
13 |
+
packaging-21.0.dist-info/LICENSE,sha256=ytHvW9NA1z4HS6YU0m996spceUDD2MNIUuZcSQlobEg,197
|
14 |
+
packaging-21.0.dist-info/LICENSE.APACHE,sha256=DVQuDIgE45qn836wDaWnYhSdxoLXgpRRKH4RuTjpRZQ,10174
|
15 |
+
packaging-21.0.dist-info/LICENSE.BSD,sha256=tw5-m3QvHMb5SLNMFqo5_-zpQZY2S8iP8NIYDwAo-sU,1344
|
16 |
+
packaging-21.0.dist-info/METADATA,sha256=ZV4MesCjT-YxFEJvLzsJ31kKmmj4ltiMUl3JvqxJfqI,13418
|
17 |
+
packaging-21.0.dist-info/WHEEL,sha256=OqRkF0eY5GHssMorFjlbTIq072vpHpF60fIQA6lS9xA,92
|
18 |
+
packaging-21.0.dist-info/top_level.txt,sha256=zFdHrhWnPslzsiP455HutQsqPB6v0KCtNUMtUtrefDw,10
|
19 |
+
packaging-21.0.dist-info/RECORD,,
|
public/gpt-2/packaging-21.0.dist-info/WHEEL
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Wheel-Version: 1.0
|
2 |
+
Generator: bdist_wheel (0.36.2)
|
3 |
+
Root-Is-Purelib: true
|
4 |
+
Tag: py3-none-any
|
5 |
+
|
public/gpt-2/packaging-21.0.dist-info/top_level.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
packaging
|
public/gpt-2/packaging/__about__.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This file is dual licensed under the terms of the Apache License, Version
|
2 |
+
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
|
3 |
+
# for complete details.
|
4 |
+
|
5 |
+
__all__ = [
|
6 |
+
"__title__",
|
7 |
+
"__summary__",
|
8 |
+
"__uri__",
|
9 |
+
"__version__",
|
10 |
+
"__author__",
|
11 |
+
"__email__",
|
12 |
+
"__license__",
|
13 |
+
"__copyright__",
|
14 |
+
]
|
15 |
+
|
16 |
+
__title__ = "packaging"
|
17 |
+
__summary__ = "Core utilities for Python packages"
|
18 |
+
__uri__ = "https://github.com/pypa/packaging"
|
19 |
+
|
20 |
+
__version__ = "21.0"
|
21 |
+
|
22 |
+
__author__ = "Donald Stufft and individual contributors"
|
23 |
+
__email__ = "[email protected]"
|
24 |
+
|
25 |
+
__license__ = "BSD-2-Clause or Apache-2.0"
|
26 |
+
__copyright__ = "2014-2019 %s" % __author__
|
public/gpt-2/packaging/__init__.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This file is dual licensed under the terms of the Apache License, Version
|
2 |
+
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
|
3 |
+
# for complete details.
|
4 |
+
|
5 |
+
from .__about__ import (
|
6 |
+
__author__,
|
7 |
+
__copyright__,
|
8 |
+
__email__,
|
9 |
+
__license__,
|
10 |
+
__summary__,
|
11 |
+
__title__,
|
12 |
+
__uri__,
|
13 |
+
__version__,
|
14 |
+
)
|
15 |
+
|
16 |
+
__all__ = [
|
17 |
+
"__title__",
|
18 |
+
"__summary__",
|
19 |
+
"__uri__",
|
20 |
+
"__version__",
|
21 |
+
"__author__",
|
22 |
+
"__email__",
|
23 |
+
"__license__",
|
24 |
+
"__copyright__",
|
25 |
+
]
|
public/gpt-2/packaging/_manylinux.py
ADDED
@@ -0,0 +1,301 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import collections
|
2 |
+
import functools
|
3 |
+
import os
|
4 |
+
import re
|
5 |
+
import struct
|
6 |
+
import sys
|
7 |
+
import warnings
|
8 |
+
from typing import IO, Dict, Iterator, NamedTuple, Optional, Tuple
|
9 |
+
|
10 |
+
|
11 |
+
# Python does not provide platform information at sufficient granularity to
|
12 |
+
# identify the architecture of the running executable in some cases, so we
|
13 |
+
# determine it dynamically by reading the information from the running
|
14 |
+
# process. This only applies on Linux, which uses the ELF format.
|
15 |
+
class _ELFFileHeader:
|
16 |
+
# https://en.wikipedia.org/wiki/Executable_and_Linkable_Format#File_header
|
17 |
+
class _InvalidELFFileHeader(ValueError):
|
18 |
+
"""
|
19 |
+
An invalid ELF file header was found.
|
20 |
+
"""
|
21 |
+
|
22 |
+
ELF_MAGIC_NUMBER = 0x7F454C46
|
23 |
+
ELFCLASS32 = 1
|
24 |
+
ELFCLASS64 = 2
|
25 |
+
ELFDATA2LSB = 1
|
26 |
+
ELFDATA2MSB = 2
|
27 |
+
EM_386 = 3
|
28 |
+
EM_S390 = 22
|
29 |
+
EM_ARM = 40
|
30 |
+
EM_X86_64 = 62
|
31 |
+
EF_ARM_ABIMASK = 0xFF000000
|
32 |
+
EF_ARM_ABI_VER5 = 0x05000000
|
33 |
+
EF_ARM_ABI_FLOAT_HARD = 0x00000400
|
34 |
+
|
35 |
+
def __init__(self, file: IO[bytes]) -> None:
|
36 |
+
def unpack(fmt: str) -> int:
|
37 |
+
try:
|
38 |
+
data = file.read(struct.calcsize(fmt))
|
39 |
+
result: Tuple[int, ...] = struct.unpack(fmt, data)
|
40 |
+
except struct.error:
|
41 |
+
raise _ELFFileHeader._InvalidELFFileHeader()
|
42 |
+
return result[0]
|
43 |
+
|
44 |
+
self.e_ident_magic = unpack(">I")
|
45 |
+
if self.e_ident_magic != self.ELF_MAGIC_NUMBER:
|
46 |
+
raise _ELFFileHeader._InvalidELFFileHeader()
|
47 |
+
self.e_ident_class = unpack("B")
|
48 |
+
if self.e_ident_class not in {self.ELFCLASS32, self.ELFCLASS64}:
|
49 |
+
raise _ELFFileHeader._InvalidELFFileHeader()
|
50 |
+
self.e_ident_data = unpack("B")
|
51 |
+
if self.e_ident_data not in {self.ELFDATA2LSB, self.ELFDATA2MSB}:
|
52 |
+
raise _ELFFileHeader._InvalidELFFileHeader()
|
53 |
+
self.e_ident_version = unpack("B")
|
54 |
+
self.e_ident_osabi = unpack("B")
|
55 |
+
self.e_ident_abiversion = unpack("B")
|
56 |
+
self.e_ident_pad = file.read(7)
|
57 |
+
format_h = "<H" if self.e_ident_data == self.ELFDATA2LSB else ">H"
|
58 |
+
format_i = "<I" if self.e_ident_data == self.ELFDATA2LSB else ">I"
|
59 |
+
format_q = "<Q" if self.e_ident_data == self.ELFDATA2LSB else ">Q"
|
60 |
+
format_p = format_i if self.e_ident_class == self.ELFCLASS32 else format_q
|
61 |
+
self.e_type = unpack(format_h)
|
62 |
+
self.e_machine = unpack(format_h)
|
63 |
+
self.e_version = unpack(format_i)
|
64 |
+
self.e_entry = unpack(format_p)
|
65 |
+
self.e_phoff = unpack(format_p)
|
66 |
+
self.e_shoff = unpack(format_p)
|
67 |
+
self.e_flags = unpack(format_i)
|
68 |
+
self.e_ehsize = unpack(format_h)
|
69 |
+
self.e_phentsize = unpack(format_h)
|
70 |
+
self.e_phnum = unpack(format_h)
|
71 |
+
self.e_shentsize = unpack(format_h)
|
72 |
+
self.e_shnum = unpack(format_h)
|
73 |
+
self.e_shstrndx = unpack(format_h)
|
74 |
+
|
75 |
+
|
76 |
+
def _get_elf_header() -> Optional[_ELFFileHeader]:
|
77 |
+
try:
|
78 |
+
with open(sys.executable, "rb") as f:
|
79 |
+
elf_header = _ELFFileHeader(f)
|
80 |
+
except (OSError, TypeError, _ELFFileHeader._InvalidELFFileHeader):
|
81 |
+
return None
|
82 |
+
return elf_header
|
83 |
+
|
84 |
+
|
85 |
+
def _is_linux_armhf() -> bool:
|
86 |
+
# hard-float ABI can be detected from the ELF header of the running
|
87 |
+
# process
|
88 |
+
# https://static.docs.arm.com/ihi0044/g/aaelf32.pdf
|
89 |
+
elf_header = _get_elf_header()
|
90 |
+
if elf_header is None:
|
91 |
+
return False
|
92 |
+
result = elf_header.e_ident_class == elf_header.ELFCLASS32
|
93 |
+
result &= elf_header.e_ident_data == elf_header.ELFDATA2LSB
|
94 |
+
result &= elf_header.e_machine == elf_header.EM_ARM
|
95 |
+
result &= (
|
96 |
+
elf_header.e_flags & elf_header.EF_ARM_ABIMASK
|
97 |
+
) == elf_header.EF_ARM_ABI_VER5
|
98 |
+
result &= (
|
99 |
+
elf_header.e_flags & elf_header.EF_ARM_ABI_FLOAT_HARD
|
100 |
+
) == elf_header.EF_ARM_ABI_FLOAT_HARD
|
101 |
+
return result
|
102 |
+
|
103 |
+
|
104 |
+
def _is_linux_i686() -> bool:
|
105 |
+
elf_header = _get_elf_header()
|
106 |
+
if elf_header is None:
|
107 |
+
return False
|
108 |
+
result = elf_header.e_ident_class == elf_header.ELFCLASS32
|
109 |
+
result &= elf_header.e_ident_data == elf_header.ELFDATA2LSB
|
110 |
+
result &= elf_header.e_machine == elf_header.EM_386
|
111 |
+
return result
|
112 |
+
|
113 |
+
|
114 |
+
def _have_compatible_abi(arch: str) -> bool:
|
115 |
+
if arch == "armv7l":
|
116 |
+
return _is_linux_armhf()
|
117 |
+
if arch == "i686":
|
118 |
+
return _is_linux_i686()
|
119 |
+
return arch in {"x86_64", "aarch64", "ppc64", "ppc64le", "s390x"}
|
120 |
+
|
121 |
+
|
122 |
+
# If glibc ever changes its major version, we need to know what the last
|
123 |
+
# minor version was, so we can build the complete list of all versions.
|
124 |
+
# For now, guess what the highest minor version might be, assume it will
|
125 |
+
# be 50 for testing. Once this actually happens, update the dictionary
|
126 |
+
# with the actual value.
|
127 |
+
_LAST_GLIBC_MINOR: Dict[int, int] = collections.defaultdict(lambda: 50)
|
128 |
+
|
129 |
+
|
130 |
+
class _GLibCVersion(NamedTuple):
|
131 |
+
major: int
|
132 |
+
minor: int
|
133 |
+
|
134 |
+
|
135 |
+
def _glibc_version_string_confstr() -> Optional[str]:
|
136 |
+
"""
|
137 |
+
Primary implementation of glibc_version_string using os.confstr.
|
138 |
+
"""
|
139 |
+
# os.confstr is quite a bit faster than ctypes.DLL. It's also less likely
|
140 |
+
# to be broken or missing. This strategy is used in the standard library
|
141 |
+
# platform module.
|
142 |
+
# https://github.com/python/cpython/blob/fcf1d003bf4f0100c/Lib/platform.py#L175-L183
|
143 |
+
try:
|
144 |
+
# os.confstr("CS_GNU_LIBC_VERSION") returns a string like "glibc 2.17".
|
145 |
+
version_string = os.confstr("CS_GNU_LIBC_VERSION")
|
146 |
+
assert version_string is not None
|
147 |
+
_, version = version_string.split()
|
148 |
+
except (AssertionError, AttributeError, OSError, ValueError):
|
149 |
+
# os.confstr() or CS_GNU_LIBC_VERSION not available (or a bad value)...
|
150 |
+
return None
|
151 |
+
return version
|
152 |
+
|
153 |
+
|
154 |
+
def _glibc_version_string_ctypes() -> Optional[str]:
|
155 |
+
"""
|
156 |
+
Fallback implementation of glibc_version_string using ctypes.
|
157 |
+
"""
|
158 |
+
try:
|
159 |
+
import ctypes
|
160 |
+
except ImportError:
|
161 |
+
return None
|
162 |
+
|
163 |
+
# ctypes.CDLL(None) internally calls dlopen(NULL), and as the dlopen
|
164 |
+
# manpage says, "If filename is NULL, then the returned handle is for the
|
165 |
+
# main program". This way we can let the linker do the work to figure out
|
166 |
+
# which libc our process is actually using.
|
167 |
+
#
|
168 |
+
# We must also handle the special case where the executable is not a
|
169 |
+
# dynamically linked executable. This can occur when using musl libc,
|
170 |
+
# for example. In this situation, dlopen() will error, leading to an
|
171 |
+
# OSError. Interestingly, at least in the case of musl, there is no
|
172 |
+
# errno set on the OSError. The single string argument used to construct
|
173 |
+
# OSError comes from libc itself and is therefore not portable to
|
174 |
+
# hard code here. In any case, failure to call dlopen() means we
|
175 |
+
# can proceed, so we bail on our attempt.
|
176 |
+
try:
|
177 |
+
process_namespace = ctypes.CDLL(None)
|
178 |
+
except OSError:
|
179 |
+
return None
|
180 |
+
|
181 |
+
try:
|
182 |
+
gnu_get_libc_version = process_namespace.gnu_get_libc_version
|
183 |
+
except AttributeError:
|
184 |
+
# Symbol doesn't exist -> therefore, we are not linked to
|
185 |
+
# glibc.
|
186 |
+
return None
|
187 |
+
|
188 |
+
# Call gnu_get_libc_version, which returns a string like "2.5"
|
189 |
+
gnu_get_libc_version.restype = ctypes.c_char_p
|
190 |
+
version_str: str = gnu_get_libc_version()
|
191 |
+
# py2 / py3 compatibility:
|
192 |
+
if not isinstance(version_str, str):
|
193 |
+
version_str = version_str.decode("ascii")
|
194 |
+
|
195 |
+
return version_str
|
196 |
+
|
197 |
+
|
198 |
+
def _glibc_version_string() -> Optional[str]:
|
199 |
+
"""Returns glibc version string, or None if not using glibc."""
|
200 |
+
return _glibc_version_string_confstr() or _glibc_version_string_ctypes()
|
201 |
+
|
202 |
+
|
203 |
+
def _parse_glibc_version(version_str: str) -> Tuple[int, int]:
|
204 |
+
"""Parse glibc version.
|
205 |
+
|
206 |
+
We use a regexp instead of str.split because we want to discard any
|
207 |
+
random junk that might come after the minor version -- this might happen
|
208 |
+
in patched/forked versions of glibc (e.g. Linaro's version of glibc
|
209 |
+
uses version strings like "2.20-2014.11"). See gh-3588.
|
210 |
+
"""
|
211 |
+
m = re.match(r"(?P<major>[0-9]+)\.(?P<minor>[0-9]+)", version_str)
|
212 |
+
if not m:
|
213 |
+
warnings.warn(
|
214 |
+
"Expected glibc version with 2 components major.minor,"
|
215 |
+
" got: %s" % version_str,
|
216 |
+
RuntimeWarning,
|
217 |
+
)
|
218 |
+
return -1, -1
|
219 |
+
return int(m.group("major")), int(m.group("minor"))
|
220 |
+
|
221 |
+
|
222 |
+
@functools.lru_cache()
|
223 |
+
def _get_glibc_version() -> Tuple[int, int]:
|
224 |
+
version_str = _glibc_version_string()
|
225 |
+
if version_str is None:
|
226 |
+
return (-1, -1)
|
227 |
+
return _parse_glibc_version(version_str)
|
228 |
+
|
229 |
+
|
230 |
+
# From PEP 513, PEP 600
|
231 |
+
def _is_compatible(name: str, arch: str, version: _GLibCVersion) -> bool:
|
232 |
+
sys_glibc = _get_glibc_version()
|
233 |
+
if sys_glibc < version:
|
234 |
+
return False
|
235 |
+
# Check for presence of _manylinux module.
|
236 |
+
try:
|
237 |
+
import _manylinux # noqa
|
238 |
+
except ImportError:
|
239 |
+
return True
|
240 |
+
if hasattr(_manylinux, "manylinux_compatible"):
|
241 |
+
result = _manylinux.manylinux_compatible(version[0], version[1], arch)
|
242 |
+
if result is not None:
|
243 |
+
return bool(result)
|
244 |
+
return True
|
245 |
+
if version == _GLibCVersion(2, 5):
|
246 |
+
if hasattr(_manylinux, "manylinux1_compatible"):
|
247 |
+
return bool(_manylinux.manylinux1_compatible)
|
248 |
+
if version == _GLibCVersion(2, 12):
|
249 |
+
if hasattr(_manylinux, "manylinux2010_compatible"):
|
250 |
+
return bool(_manylinux.manylinux2010_compatible)
|
251 |
+
if version == _GLibCVersion(2, 17):
|
252 |
+
if hasattr(_manylinux, "manylinux2014_compatible"):
|
253 |
+
return bool(_manylinux.manylinux2014_compatible)
|
254 |
+
return True
|
255 |
+
|
256 |
+
|
257 |
+
_LEGACY_MANYLINUX_MAP = {
|
258 |
+
# CentOS 7 w/ glibc 2.17 (PEP 599)
|
259 |
+
(2, 17): "manylinux2014",
|
260 |
+
# CentOS 6 w/ glibc 2.12 (PEP 571)
|
261 |
+
(2, 12): "manylinux2010",
|
262 |
+
# CentOS 5 w/ glibc 2.5 (PEP 513)
|
263 |
+
(2, 5): "manylinux1",
|
264 |
+
}
|
265 |
+
|
266 |
+
|
267 |
+
def platform_tags(linux: str, arch: str) -> Iterator[str]:
|
268 |
+
if not _have_compatible_abi(arch):
|
269 |
+
return
|
270 |
+
# Oldest glibc to be supported regardless of architecture is (2, 17).
|
271 |
+
too_old_glibc2 = _GLibCVersion(2, 16)
|
272 |
+
if arch in {"x86_64", "i686"}:
|
273 |
+
# On x86/i686 also oldest glibc to be supported is (2, 5).
|
274 |
+
too_old_glibc2 = _GLibCVersion(2, 4)
|
275 |
+
current_glibc = _GLibCVersion(*_get_glibc_version())
|
276 |
+
glibc_max_list = [current_glibc]
|
277 |
+
# We can assume compatibility across glibc major versions.
|
278 |
+
# https://sourceware.org/bugzilla/show_bug.cgi?id=24636
|
279 |
+
#
|
280 |
+
# Build a list of maximum glibc versions so that we can
|
281 |
+
# output the canonical list of all glibc from current_glibc
|
282 |
+
# down to too_old_glibc2, including all intermediary versions.
|
283 |
+
for glibc_major in range(current_glibc.major - 1, 1, -1):
|
284 |
+
glibc_minor = _LAST_GLIBC_MINOR[glibc_major]
|
285 |
+
glibc_max_list.append(_GLibCVersion(glibc_major, glibc_minor))
|
286 |
+
for glibc_max in glibc_max_list:
|
287 |
+
if glibc_max.major == too_old_glibc2.major:
|
288 |
+
min_minor = too_old_glibc2.minor
|
289 |
+
else:
|
290 |
+
# For other glibc major versions oldest supported is (x, 0).
|
291 |
+
min_minor = -1
|
292 |
+
for glibc_minor in range(glibc_max.minor, min_minor, -1):
|
293 |
+
glibc_version = _GLibCVersion(glibc_max.major, glibc_minor)
|
294 |
+
tag = "manylinux_{}_{}".format(*glibc_version)
|
295 |
+
if _is_compatible(tag, arch, glibc_version):
|
296 |
+
yield linux.replace("linux", tag)
|
297 |
+
# Handle the legacy manylinux1, manylinux2010, manylinux2014 tags.
|
298 |
+
if glibc_version in _LEGACY_MANYLINUX_MAP:
|
299 |
+
legacy_tag = _LEGACY_MANYLINUX_MAP[glibc_version]
|
300 |
+
if _is_compatible(legacy_tag, arch, glibc_version):
|
301 |
+
yield linux.replace("linux", legacy_tag)
|
public/gpt-2/packaging/_musllinux.py
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""PEP 656 support.
|
2 |
+
|
3 |
+
This module implements logic to detect if the currently running Python is
|
4 |
+
linked against musl, and what musl version is used.
|
5 |
+
"""
|
6 |
+
|
7 |
+
import contextlib
|
8 |
+
import functools
|
9 |
+
import operator
|
10 |
+
import os
|
11 |
+
import re
|
12 |
+
import struct
|
13 |
+
import subprocess
|
14 |
+
import sys
|
15 |
+
from typing import IO, Iterator, NamedTuple, Optional, Tuple
|
16 |
+
|
17 |
+
|
18 |
+
def _read_unpacked(f: IO[bytes], fmt: str) -> Tuple[int, ...]:
|
19 |
+
return struct.unpack(fmt, f.read(struct.calcsize(fmt)))
|
20 |
+
|
21 |
+
|
22 |
+
def _parse_ld_musl_from_elf(f: IO[bytes]) -> Optional[str]:
|
23 |
+
"""Detect musl libc location by parsing the Python executable.
|
24 |
+
|
25 |
+
Based on: https://gist.github.com/lyssdod/f51579ae8d93c8657a5564aefc2ffbca
|
26 |
+
ELF header: https://refspecs.linuxfoundation.org/elf/gabi4+/ch4.eheader.html
|
27 |
+
"""
|
28 |
+
f.seek(0)
|
29 |
+
try:
|
30 |
+
ident = _read_unpacked(f, "16B")
|
31 |
+
except struct.error:
|
32 |
+
return None
|
33 |
+
if ident[:4] != tuple(b"\x7fELF"): # Invalid magic, not ELF.
|
34 |
+
return None
|
35 |
+
f.seek(struct.calcsize("HHI"), 1) # Skip file type, machine, and version.
|
36 |
+
|
37 |
+
try:
|
38 |
+
# e_fmt: Format for program header.
|
39 |
+
# p_fmt: Format for section header.
|
40 |
+
# p_idx: Indexes to find p_type, p_offset, and p_filesz.
|
41 |
+
e_fmt, p_fmt, p_idx = {
|
42 |
+
1: ("IIIIHHH", "IIIIIIII", (0, 1, 4)), # 32-bit.
|
43 |
+
2: ("QQQIHHH", "IIQQQQQQ", (0, 2, 5)), # 64-bit.
|
44 |
+
}[ident[4]]
|
45 |
+
except KeyError:
|
46 |
+
return None
|
47 |
+
else:
|
48 |
+
p_get = operator.itemgetter(*p_idx)
|
49 |
+
|
50 |
+
# Find the interpreter section and return its content.
|
51 |
+
try:
|
52 |
+
_, e_phoff, _, _, _, e_phentsize, e_phnum = _read_unpacked(f, e_fmt)
|
53 |
+
except struct.error:
|
54 |
+
return None
|
55 |
+
for i in range(e_phnum + 1):
|
56 |
+
f.seek(e_phoff + e_phentsize * i)
|
57 |
+
try:
|
58 |
+
p_type, p_offset, p_filesz = p_get(_read_unpacked(f, p_fmt))
|
59 |
+
except struct.error:
|
60 |
+
return None
|
61 |
+
if p_type != 3: # Not PT_INTERP.
|
62 |
+
continue
|
63 |
+
f.seek(p_offset)
|
64 |
+
interpreter = os.fsdecode(f.read(p_filesz)).strip("\0")
|
65 |
+
if "musl" not in interpreter:
|
66 |
+
return None
|
67 |
+
return interpreter
|
68 |
+
return None
|
69 |
+
|
70 |
+
|
71 |
+
class _MuslVersion(NamedTuple):
|
72 |
+
major: int
|
73 |
+
minor: int
|
74 |
+
|
75 |
+
|
76 |
+
def _parse_musl_version(output: str) -> Optional[_MuslVersion]:
|
77 |
+
lines = [n for n in (n.strip() for n in output.splitlines()) if n]
|
78 |
+
if len(lines) < 2 or lines[0][:4] != "musl":
|
79 |
+
return None
|
80 |
+
m = re.match(r"Version (\d+)\.(\d+)", lines[1])
|
81 |
+
if not m:
|
82 |
+
return None
|
83 |
+
return _MuslVersion(major=int(m.group(1)), minor=int(m.group(2)))
|
84 |
+
|
85 |
+
|
86 |
+
@functools.lru_cache()
|
87 |
+
def _get_musl_version(executable: str) -> Optional[_MuslVersion]:
|
88 |
+
"""Detect currently-running musl runtime version.
|
89 |
+
|
90 |
+
This is done by checking the specified executable's dynamic linking
|
91 |
+
information, and invoking the loader to parse its output for a version
|
92 |
+
string. If the loader is musl, the output would be something like::
|
93 |
+
|
94 |
+
musl libc (x86_64)
|
95 |
+
Version 1.2.2
|
96 |
+
Dynamic Program Loader
|
97 |
+
"""
|
98 |
+
with contextlib.ExitStack() as stack:
|
99 |
+
try:
|
100 |
+
f = stack.enter_context(open(executable, "rb"))
|
101 |
+
except IOError:
|
102 |
+
return None
|
103 |
+
ld = _parse_ld_musl_from_elf(f)
|
104 |
+
if not ld:
|
105 |
+
return None
|
106 |
+
proc = subprocess.run([ld], stderr=subprocess.PIPE, universal_newlines=True)
|
107 |
+
return _parse_musl_version(proc.stderr)
|
108 |
+
|
109 |
+
|
110 |
+
def platform_tags(arch: str) -> Iterator[str]:
|
111 |
+
"""Generate musllinux tags compatible to the current platform.
|
112 |
+
|
113 |
+
:param arch: Should be the part of platform tag after the ``linux_``
|
114 |
+
prefix, e.g. ``x86_64``. The ``linux_`` prefix is assumed as a
|
115 |
+
prerequisite for the current platform to be musllinux-compatible.
|
116 |
+
|
117 |
+
:returns: An iterator of compatible musllinux tags.
|
118 |
+
"""
|
119 |
+
sys_musl = _get_musl_version(sys.executable)
|
120 |
+
if sys_musl is None: # Python not dynamically linked against musl.
|
121 |
+
return
|
122 |
+
for minor in range(sys_musl.minor, -1, -1):
|
123 |
+
yield f"musllinux_{sys_musl.major}_{minor}_{arch}"
|
124 |
+
|
125 |
+
|
126 |
+
if __name__ == "__main__": # pragma: no cover
|
127 |
+
import sysconfig
|
128 |
+
|
129 |
+
plat = sysconfig.get_platform()
|
130 |
+
assert plat.startswith("linux-"), "not linux"
|
131 |
+
|
132 |
+
print("plat:", plat)
|
133 |
+
print("musl:", _get_musl_version(sys.executable))
|
134 |
+
print("tags:", end=" ")
|
135 |
+
for t in platform_tags(re.sub(r"[.-]", "_", plat.split("-", 1)[-1])):
|
136 |
+
print(t, end="\n ")
|
public/gpt-2/packaging/_structures.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This file is dual licensed under the terms of the Apache License, Version
|
2 |
+
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
|
3 |
+
# for complete details.
|
4 |
+
|
5 |
+
|
6 |
+
class InfinityType:
|
7 |
+
def __repr__(self) -> str:
|
8 |
+
return "Infinity"
|
9 |
+
|
10 |
+
def __hash__(self) -> int:
|
11 |
+
return hash(repr(self))
|
12 |
+
|
13 |
+
def __lt__(self, other: object) -> bool:
|
14 |
+
return False
|
15 |
+
|
16 |
+
def __le__(self, other: object) -> bool:
|
17 |
+
return False
|
18 |
+
|
19 |
+
def __eq__(self, other: object) -> bool:
|
20 |
+
return isinstance(other, self.__class__)
|
21 |
+
|
22 |
+
def __ne__(self, other: object) -> bool:
|
23 |
+
return not isinstance(other, self.__class__)
|
24 |
+
|
25 |
+
def __gt__(self, other: object) -> bool:
|
26 |
+
return True
|
27 |
+
|
28 |
+
def __ge__(self, other: object) -> bool:
|
29 |
+
return True
|
30 |
+
|
31 |
+
def __neg__(self: object) -> "NegativeInfinityType":
|
32 |
+
return NegativeInfinity
|
33 |
+
|
34 |
+
|
35 |
+
Infinity = InfinityType()
|
36 |
+
|
37 |
+
|
38 |
+
class NegativeInfinityType:
|
39 |
+
def __repr__(self) -> str:
|
40 |
+
return "-Infinity"
|
41 |
+
|
42 |
+
def __hash__(self) -> int:
|
43 |
+
return hash(repr(self))
|
44 |
+
|
45 |
+
def __lt__(self, other: object) -> bool:
|
46 |
+
return True
|
47 |
+
|
48 |
+
def __le__(self, other: object) -> bool:
|
49 |
+
return True
|
50 |
+
|
51 |
+
def __eq__(self, other: object) -> bool:
|
52 |
+
return isinstance(other, self.__class__)
|
53 |
+
|
54 |
+
def __ne__(self, other: object) -> bool:
|
55 |
+
return not isinstance(other, self.__class__)
|
56 |
+
|
57 |
+
def __gt__(self, other: object) -> bool:
|
58 |
+
return False
|
59 |
+
|
60 |
+
def __ge__(self, other: object) -> bool:
|
61 |
+
return False
|
62 |
+
|
63 |
+
def __neg__(self: object) -> InfinityType:
|
64 |
+
return Infinity
|
65 |
+
|
66 |
+
|
67 |
+
NegativeInfinity = NegativeInfinityType()
|
public/gpt-2/packaging/markers.py
ADDED
@@ -0,0 +1,304 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This file is dual licensed under the terms of the Apache License, Version
|
2 |
+
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
|
3 |
+
# for complete details.
|
4 |
+
|
5 |
+
import operator
|
6 |
+
import os
|
7 |
+
import platform
|
8 |
+
import sys
|
9 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
10 |
+
|
11 |
+
from pyparsing import ( # noqa: N817
|
12 |
+
Forward,
|
13 |
+
Group,
|
14 |
+
Literal as L,
|
15 |
+
ParseException,
|
16 |
+
ParseResults,
|
17 |
+
QuotedString,
|
18 |
+
ZeroOrMore,
|
19 |
+
stringEnd,
|
20 |
+
stringStart,
|
21 |
+
)
|
22 |
+
|
23 |
+
from .specifiers import InvalidSpecifier, Specifier
|
24 |
+
|
25 |
+
__all__ = [
|
26 |
+
"InvalidMarker",
|
27 |
+
"UndefinedComparison",
|
28 |
+
"UndefinedEnvironmentName",
|
29 |
+
"Marker",
|
30 |
+
"default_environment",
|
31 |
+
]
|
32 |
+
|
33 |
+
Operator = Callable[[str, str], bool]
|
34 |
+
|
35 |
+
|
36 |
+
class InvalidMarker(ValueError):
|
37 |
+
"""
|
38 |
+
An invalid marker was found, users should refer to PEP 508.
|
39 |
+
"""
|
40 |
+
|
41 |
+
|
42 |
+
class UndefinedComparison(ValueError):
|
43 |
+
"""
|
44 |
+
An invalid operation was attempted on a value that doesn't support it.
|
45 |
+
"""
|
46 |
+
|
47 |
+
|
48 |
+
class UndefinedEnvironmentName(ValueError):
|
49 |
+
"""
|
50 |
+
A name was attempted to be used that does not exist inside of the
|
51 |
+
environment.
|
52 |
+
"""
|
53 |
+
|
54 |
+
|
55 |
+
class Node:
|
56 |
+
def __init__(self, value: Any) -> None:
|
57 |
+
self.value = value
|
58 |
+
|
59 |
+
def __str__(self) -> str:
|
60 |
+
return str(self.value)
|
61 |
+
|
62 |
+
def __repr__(self) -> str:
|
63 |
+
return f"<{self.__class__.__name__}('{self}')>"
|
64 |
+
|
65 |
+
def serialize(self) -> str:
|
66 |
+
raise NotImplementedError
|
67 |
+
|
68 |
+
|
69 |
+
class Variable(Node):
|
70 |
+
def serialize(self) -> str:
|
71 |
+
return str(self)
|
72 |
+
|
73 |
+
|
74 |
+
class Value(Node):
|
75 |
+
def serialize(self) -> str:
|
76 |
+
return f'"{self}"'
|
77 |
+
|
78 |
+
|
79 |
+
class Op(Node):
|
80 |
+
def serialize(self) -> str:
|
81 |
+
return str(self)
|
82 |
+
|
83 |
+
|
84 |
+
VARIABLE = (
|
85 |
+
L("implementation_version")
|
86 |
+
| L("platform_python_implementation")
|
87 |
+
| L("implementation_name")
|
88 |
+
| L("python_full_version")
|
89 |
+
| L("platform_release")
|
90 |
+
| L("platform_version")
|
91 |
+
| L("platform_machine")
|
92 |
+
| L("platform_system")
|
93 |
+
| L("python_version")
|
94 |
+
| L("sys_platform")
|
95 |
+
| L("os_name")
|
96 |
+
| L("os.name") # PEP-345
|
97 |
+
| L("sys.platform") # PEP-345
|
98 |
+
| L("platform.version") # PEP-345
|
99 |
+
| L("platform.machine") # PEP-345
|
100 |
+
| L("platform.python_implementation") # PEP-345
|
101 |
+
| L("python_implementation") # undocumented setuptools legacy
|
102 |
+
| L("extra") # PEP-508
|
103 |
+
)
|
104 |
+
ALIASES = {
|
105 |
+
"os.name": "os_name",
|
106 |
+
"sys.platform": "sys_platform",
|
107 |
+
"platform.version": "platform_version",
|
108 |
+
"platform.machine": "platform_machine",
|
109 |
+
"platform.python_implementation": "platform_python_implementation",
|
110 |
+
"python_implementation": "platform_python_implementation",
|
111 |
+
}
|
112 |
+
VARIABLE.setParseAction(lambda s, l, t: Variable(ALIASES.get(t[0], t[0])))
|
113 |
+
|
114 |
+
VERSION_CMP = (
|
115 |
+
L("===") | L("==") | L(">=") | L("<=") | L("!=") | L("~=") | L(">") | L("<")
|
116 |
+
)
|
117 |
+
|
118 |
+
MARKER_OP = VERSION_CMP | L("not in") | L("in")
|
119 |
+
MARKER_OP.setParseAction(lambda s, l, t: Op(t[0]))
|
120 |
+
|
121 |
+
MARKER_VALUE = QuotedString("'") | QuotedString('"')
|
122 |
+
MARKER_VALUE.setParseAction(lambda s, l, t: Value(t[0]))
|
123 |
+
|
124 |
+
BOOLOP = L("and") | L("or")
|
125 |
+
|
126 |
+
MARKER_VAR = VARIABLE | MARKER_VALUE
|
127 |
+
|
128 |
+
MARKER_ITEM = Group(MARKER_VAR + MARKER_OP + MARKER_VAR)
|
129 |
+
MARKER_ITEM.setParseAction(lambda s, l, t: tuple(t[0]))
|
130 |
+
|
131 |
+
LPAREN = L("(").suppress()
|
132 |
+
RPAREN = L(")").suppress()
|
133 |
+
|
134 |
+
MARKER_EXPR = Forward()
|
135 |
+
MARKER_ATOM = MARKER_ITEM | Group(LPAREN + MARKER_EXPR + RPAREN)
|
136 |
+
MARKER_EXPR << MARKER_ATOM + ZeroOrMore(BOOLOP + MARKER_EXPR)
|
137 |
+
|
138 |
+
MARKER = stringStart + MARKER_EXPR + stringEnd
|
139 |
+
|
140 |
+
|
141 |
+
def _coerce_parse_result(results: Union[ParseResults, List[Any]]) -> List[Any]:
|
142 |
+
if isinstance(results, ParseResults):
|
143 |
+
return [_coerce_parse_result(i) for i in results]
|
144 |
+
else:
|
145 |
+
return results
|
146 |
+
|
147 |
+
|
148 |
+
def _format_marker(
|
149 |
+
marker: Union[List[str], Tuple[Node, ...], str], first: Optional[bool] = True
|
150 |
+
) -> str:
|
151 |
+
|
152 |
+
assert isinstance(marker, (list, tuple, str))
|
153 |
+
|
154 |
+
# Sometimes we have a structure like [[...]] which is a single item list
|
155 |
+
# where the single item is itself it's own list. In that case we want skip
|
156 |
+
# the rest of this function so that we don't get extraneous () on the
|
157 |
+
# outside.
|
158 |
+
if (
|
159 |
+
isinstance(marker, list)
|
160 |
+
and len(marker) == 1
|
161 |
+
and isinstance(marker[0], (list, tuple))
|
162 |
+
):
|
163 |
+
return _format_marker(marker[0])
|
164 |
+
|
165 |
+
if isinstance(marker, list):
|
166 |
+
inner = (_format_marker(m, first=False) for m in marker)
|
167 |
+
if first:
|
168 |
+
return " ".join(inner)
|
169 |
+
else:
|
170 |
+
return "(" + " ".join(inner) + ")"
|
171 |
+
elif isinstance(marker, tuple):
|
172 |
+
return " ".join([m.serialize() for m in marker])
|
173 |
+
else:
|
174 |
+
return marker
|
175 |
+
|
176 |
+
|
177 |
+
_operators: Dict[str, Operator] = {
|
178 |
+
"in": lambda lhs, rhs: lhs in rhs,
|
179 |
+
"not in": lambda lhs, rhs: lhs not in rhs,
|
180 |
+
"<": operator.lt,
|
181 |
+
"<=": operator.le,
|
182 |
+
"==": operator.eq,
|
183 |
+
"!=": operator.ne,
|
184 |
+
">=": operator.ge,
|
185 |
+
">": operator.gt,
|
186 |
+
}
|
187 |
+
|
188 |
+
|
189 |
+
def _eval_op(lhs: str, op: Op, rhs: str) -> bool:
|
190 |
+
try:
|
191 |
+
spec = Specifier("".join([op.serialize(), rhs]))
|
192 |
+
except InvalidSpecifier:
|
193 |
+
pass
|
194 |
+
else:
|
195 |
+
return spec.contains(lhs)
|
196 |
+
|
197 |
+
oper: Optional[Operator] = _operators.get(op.serialize())
|
198 |
+
if oper is None:
|
199 |
+
raise UndefinedComparison(f"Undefined {op!r} on {lhs!r} and {rhs!r}.")
|
200 |
+
|
201 |
+
return oper(lhs, rhs)
|
202 |
+
|
203 |
+
|
204 |
+
class Undefined:
|
205 |
+
pass
|
206 |
+
|
207 |
+
|
208 |
+
_undefined = Undefined()
|
209 |
+
|
210 |
+
|
211 |
+
def _get_env(environment: Dict[str, str], name: str) -> str:
|
212 |
+
value: Union[str, Undefined] = environment.get(name, _undefined)
|
213 |
+
|
214 |
+
if isinstance(value, Undefined):
|
215 |
+
raise UndefinedEnvironmentName(
|
216 |
+
f"{name!r} does not exist in evaluation environment."
|
217 |
+
)
|
218 |
+
|
219 |
+
return value
|
220 |
+
|
221 |
+
|
222 |
+
def _evaluate_markers(markers: List[Any], environment: Dict[str, str]) -> bool:
|
223 |
+
groups: List[List[bool]] = [[]]
|
224 |
+
|
225 |
+
for marker in markers:
|
226 |
+
assert isinstance(marker, (list, tuple, str))
|
227 |
+
|
228 |
+
if isinstance(marker, list):
|
229 |
+
groups[-1].append(_evaluate_markers(marker, environment))
|
230 |
+
elif isinstance(marker, tuple):
|
231 |
+
lhs, op, rhs = marker
|
232 |
+
|
233 |
+
if isinstance(lhs, Variable):
|
234 |
+
lhs_value = _get_env(environment, lhs.value)
|
235 |
+
rhs_value = rhs.value
|
236 |
+
else:
|
237 |
+
lhs_value = lhs.value
|
238 |
+
rhs_value = _get_env(environment, rhs.value)
|
239 |
+
|
240 |
+
groups[-1].append(_eval_op(lhs_value, op, rhs_value))
|
241 |
+
else:
|
242 |
+
assert marker in ["and", "or"]
|
243 |
+
if marker == "or":
|
244 |
+
groups.append([])
|
245 |
+
|
246 |
+
return any(all(item) for item in groups)
|
247 |
+
|
248 |
+
|
249 |
+
def format_full_version(info: "sys._version_info") -> str:
|
250 |
+
version = "{0.major}.{0.minor}.{0.micro}".format(info)
|
251 |
+
kind = info.releaselevel
|
252 |
+
if kind != "final":
|
253 |
+
version += kind[0] + str(info.serial)
|
254 |
+
return version
|
255 |
+
|
256 |
+
|
257 |
+
def default_environment() -> Dict[str, str]:
|
258 |
+
iver = format_full_version(sys.implementation.version)
|
259 |
+
implementation_name = sys.implementation.name
|
260 |
+
return {
|
261 |
+
"implementation_name": implementation_name,
|
262 |
+
"implementation_version": iver,
|
263 |
+
"os_name": os.name,
|
264 |
+
"platform_machine": platform.machine(),
|
265 |
+
"platform_release": platform.release(),
|
266 |
+
"platform_system": platform.system(),
|
267 |
+
"platform_version": platform.version(),
|
268 |
+
"python_full_version": platform.python_version(),
|
269 |
+
"platform_python_implementation": platform.python_implementation(),
|
270 |
+
"python_version": ".".join(platform.python_version_tuple()[:2]),
|
271 |
+
"sys_platform": sys.platform,
|
272 |
+
}
|
273 |
+
|
274 |
+
|
275 |
+
class Marker:
|
276 |
+
def __init__(self, marker: str) -> None:
|
277 |
+
try:
|
278 |
+
self._markers = _coerce_parse_result(MARKER.parseString(marker))
|
279 |
+
except ParseException as e:
|
280 |
+
raise InvalidMarker(
|
281 |
+
f"Invalid marker: {marker!r}, parse error at "
|
282 |
+
f"{marker[e.loc : e.loc + 8]!r}"
|
283 |
+
)
|
284 |
+
|
285 |
+
def __str__(self) -> str:
|
286 |
+
return _format_marker(self._markers)
|
287 |
+
|
288 |
+
def __repr__(self) -> str:
|
289 |
+
return f"<Marker('{self}')>"
|
290 |
+
|
291 |
+
def evaluate(self, environment: Optional[Dict[str, str]] = None) -> bool:
|
292 |
+
"""Evaluate a marker.
|
293 |
+
|
294 |
+
Return the boolean from evaluating the given marker against the
|
295 |
+
environment. environment is an optional argument to override all or
|
296 |
+
part of the determined environment.
|
297 |
+
|
298 |
+
The environment is determined from the current Python process.
|
299 |
+
"""
|
300 |
+
current_environment = default_environment()
|
301 |
+
if environment is not None:
|
302 |
+
current_environment.update(environment)
|
303 |
+
|
304 |
+
return _evaluate_markers(self._markers, current_environment)
|
public/gpt-2/packaging/py.typed
ADDED
File without changes
|
public/gpt-2/packaging/requirements.py
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This file is dual licensed under the terms of the Apache License, Version
|
2 |
+
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
|
3 |
+
# for complete details.
|
4 |
+
|
5 |
+
import re
|
6 |
+
import string
|
7 |
+
import urllib.parse
|
8 |
+
from typing import List, Optional as TOptional, Set
|
9 |
+
|
10 |
+
from pyparsing import ( # noqa
|
11 |
+
Combine,
|
12 |
+
Literal as L,
|
13 |
+
Optional,
|
14 |
+
ParseException,
|
15 |
+
Regex,
|
16 |
+
Word,
|
17 |
+
ZeroOrMore,
|
18 |
+
originalTextFor,
|
19 |
+
stringEnd,
|
20 |
+
stringStart,
|
21 |
+
)
|
22 |
+
|
23 |
+
from .markers import MARKER_EXPR, Marker
|
24 |
+
from .specifiers import LegacySpecifier, Specifier, SpecifierSet
|
25 |
+
|
26 |
+
|
27 |
+
class InvalidRequirement(ValueError):
|
28 |
+
"""
|
29 |
+
An invalid requirement was found, users should refer to PEP 508.
|
30 |
+
"""
|
31 |
+
|
32 |
+
|
33 |
+
ALPHANUM = Word(string.ascii_letters + string.digits)
|
34 |
+
|
35 |
+
LBRACKET = L("[").suppress()
|
36 |
+
RBRACKET = L("]").suppress()
|
37 |
+
LPAREN = L("(").suppress()
|
38 |
+
RPAREN = L(")").suppress()
|
39 |
+
COMMA = L(",").suppress()
|
40 |
+
SEMICOLON = L(";").suppress()
|
41 |
+
AT = L("@").suppress()
|
42 |
+
|
43 |
+
PUNCTUATION = Word("-_.")
|
44 |
+
IDENTIFIER_END = ALPHANUM | (ZeroOrMore(PUNCTUATION) + ALPHANUM)
|
45 |
+
IDENTIFIER = Combine(ALPHANUM + ZeroOrMore(IDENTIFIER_END))
|
46 |
+
|
47 |
+
NAME = IDENTIFIER("name")
|
48 |
+
EXTRA = IDENTIFIER
|
49 |
+
|
50 |
+
URI = Regex(r"[^ ]+")("url")
|
51 |
+
URL = AT + URI
|
52 |
+
|
53 |
+
EXTRAS_LIST = EXTRA + ZeroOrMore(COMMA + EXTRA)
|
54 |
+
EXTRAS = (LBRACKET + Optional(EXTRAS_LIST) + RBRACKET)("extras")
|
55 |
+
|
56 |
+
VERSION_PEP440 = Regex(Specifier._regex_str, re.VERBOSE | re.IGNORECASE)
|
57 |
+
VERSION_LEGACY = Regex(LegacySpecifier._regex_str, re.VERBOSE | re.IGNORECASE)
|
58 |
+
|
59 |
+
VERSION_ONE = VERSION_PEP440 ^ VERSION_LEGACY
|
60 |
+
VERSION_MANY = Combine(
|
61 |
+
VERSION_ONE + ZeroOrMore(COMMA + VERSION_ONE), joinString=",", adjacent=False
|
62 |
+
)("_raw_spec")
|
63 |
+
_VERSION_SPEC = Optional((LPAREN + VERSION_MANY + RPAREN) | VERSION_MANY)
|
64 |
+
_VERSION_SPEC.setParseAction(lambda s, l, t: t._raw_spec or "")
|
65 |
+
|
66 |
+
VERSION_SPEC = originalTextFor(_VERSION_SPEC)("specifier")
|
67 |
+
VERSION_SPEC.setParseAction(lambda s, l, t: t[1])
|
68 |
+
|
69 |
+
MARKER_EXPR = originalTextFor(MARKER_EXPR())("marker")
|
70 |
+
MARKER_EXPR.setParseAction(
|
71 |
+
lambda s, l, t: Marker(s[t._original_start : t._original_end])
|
72 |
+
)
|
73 |
+
MARKER_SEPARATOR = SEMICOLON
|
74 |
+
MARKER = MARKER_SEPARATOR + MARKER_EXPR
|
75 |
+
|
76 |
+
VERSION_AND_MARKER = VERSION_SPEC + Optional(MARKER)
|
77 |
+
URL_AND_MARKER = URL + Optional(MARKER)
|
78 |
+
|
79 |
+
NAMED_REQUIREMENT = NAME + Optional(EXTRAS) + (URL_AND_MARKER | VERSION_AND_MARKER)
|
80 |
+
|
81 |
+
REQUIREMENT = stringStart + NAMED_REQUIREMENT + stringEnd
|
82 |
+
# pyparsing isn't thread safe during initialization, so we do it eagerly, see
|
83 |
+
# issue #104
|
84 |
+
REQUIREMENT.parseString("x[]")
|
85 |
+
|
86 |
+
|
87 |
+
class Requirement:
|
88 |
+
"""Parse a requirement.
|
89 |
+
|
90 |
+
Parse a given requirement string into its parts, such as name, specifier,
|
91 |
+
URL, and extras. Raises InvalidRequirement on a badly-formed requirement
|
92 |
+
string.
|
93 |
+
"""
|
94 |
+
|
95 |
+
# TODO: Can we test whether something is contained within a requirement?
|
96 |
+
# If so how do we do that? Do we need to test against the _name_ of
|
97 |
+
# the thing as well as the version? What about the markers?
|
98 |
+
# TODO: Can we normalize the name and extra name?
|
99 |
+
|
100 |
+
def __init__(self, requirement_string: str) -> None:
|
101 |
+
try:
|
102 |
+
req = REQUIREMENT.parseString(requirement_string)
|
103 |
+
except ParseException as e:
|
104 |
+
raise InvalidRequirement(
|
105 |
+
f'Parse error at "{ requirement_string[e.loc : e.loc + 8]!r}": {e.msg}'
|
106 |
+
)
|
107 |
+
|
108 |
+
self.name: str = req.name
|
109 |
+
if req.url:
|
110 |
+
parsed_url = urllib.parse.urlparse(req.url)
|
111 |
+
if parsed_url.scheme == "file":
|
112 |
+
if urllib.parse.urlunparse(parsed_url) != req.url:
|
113 |
+
raise InvalidRequirement("Invalid URL given")
|
114 |
+
elif not (parsed_url.scheme and parsed_url.netloc) or (
|
115 |
+
not parsed_url.scheme and not parsed_url.netloc
|
116 |
+
):
|
117 |
+
raise InvalidRequirement(f"Invalid URL: {req.url}")
|
118 |
+
self.url: TOptional[str] = req.url
|
119 |
+
else:
|
120 |
+
self.url = None
|
121 |
+
self.extras: Set[str] = set(req.extras.asList() if req.extras else [])
|
122 |
+
self.specifier: SpecifierSet = SpecifierSet(req.specifier)
|
123 |
+
self.marker: TOptional[Marker] = req.marker if req.marker else None
|
124 |
+
|
125 |
+
def __str__(self) -> str:
|
126 |
+
parts: List[str] = [self.name]
|
127 |
+
|
128 |
+
if self.extras:
|
129 |
+
formatted_extras = ",".join(sorted(self.extras))
|
130 |
+
parts.append(f"[{formatted_extras}]")
|
131 |
+
|
132 |
+
if self.specifier:
|
133 |
+
parts.append(str(self.specifier))
|
134 |
+
|
135 |
+
if self.url:
|
136 |
+
parts.append(f"@ {self.url}")
|
137 |
+
if self.marker:
|
138 |
+
parts.append(" ")
|
139 |
+
|
140 |
+
if self.marker:
|
141 |
+
parts.append(f"; {self.marker}")
|
142 |
+
|
143 |
+
return "".join(parts)
|
144 |
+
|
145 |
+
def __repr__(self) -> str:
|
146 |
+
return f"<Requirement('{self}')>"
|
public/gpt-2/packaging/specifiers.py
ADDED
@@ -0,0 +1,828 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This file is dual licensed under the terms of the Apache License, Version
|
2 |
+
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
|
3 |
+
# for complete details.
|
4 |
+
|
5 |
+
import abc
|
6 |
+
import functools
|
7 |
+
import itertools
|
8 |
+
import re
|
9 |
+
import warnings
|
10 |
+
from typing import (
|
11 |
+
Callable,
|
12 |
+
Dict,
|
13 |
+
Iterable,
|
14 |
+
Iterator,
|
15 |
+
List,
|
16 |
+
Optional,
|
17 |
+
Pattern,
|
18 |
+
Set,
|
19 |
+
Tuple,
|
20 |
+
TypeVar,
|
21 |
+
Union,
|
22 |
+
)
|
23 |
+
|
24 |
+
from .utils import canonicalize_version
|
25 |
+
from .version import LegacyVersion, Version, parse
|
26 |
+
|
27 |
+
ParsedVersion = Union[Version, LegacyVersion]
|
28 |
+
UnparsedVersion = Union[Version, LegacyVersion, str]
|
29 |
+
VersionTypeVar = TypeVar("VersionTypeVar", bound=UnparsedVersion)
|
30 |
+
CallableOperator = Callable[[ParsedVersion, str], bool]
|
31 |
+
|
32 |
+
|
33 |
+
class InvalidSpecifier(ValueError):
|
34 |
+
"""
|
35 |
+
An invalid specifier was found, users should refer to PEP 440.
|
36 |
+
"""
|
37 |
+
|
38 |
+
|
39 |
+
class BaseSpecifier(metaclass=abc.ABCMeta):
|
40 |
+
@abc.abstractmethod
|
41 |
+
def __str__(self) -> str:
|
42 |
+
"""
|
43 |
+
Returns the str representation of this Specifier like object. This
|
44 |
+
should be representative of the Specifier itself.
|
45 |
+
"""
|
46 |
+
|
47 |
+
@abc.abstractmethod
|
48 |
+
def __hash__(self) -> int:
|
49 |
+
"""
|
50 |
+
Returns a hash value for this Specifier like object.
|
51 |
+
"""
|
52 |
+
|
53 |
+
@abc.abstractmethod
|
54 |
+
def __eq__(self, other: object) -> bool:
|
55 |
+
"""
|
56 |
+
Returns a boolean representing whether or not the two Specifier like
|
57 |
+
objects are equal.
|
58 |
+
"""
|
59 |
+
|
60 |
+
@abc.abstractmethod
|
61 |
+
def __ne__(self, other: object) -> bool:
|
62 |
+
"""
|
63 |
+
Returns a boolean representing whether or not the two Specifier like
|
64 |
+
objects are not equal.
|
65 |
+
"""
|
66 |
+
|
67 |
+
@abc.abstractproperty
|
68 |
+
def prereleases(self) -> Optional[bool]:
|
69 |
+
"""
|
70 |
+
Returns whether or not pre-releases as a whole are allowed by this
|
71 |
+
specifier.
|
72 |
+
"""
|
73 |
+
|
74 |
+
@prereleases.setter
|
75 |
+
def prereleases(self, value: bool) -> None:
|
76 |
+
"""
|
77 |
+
Sets whether or not pre-releases as a whole are allowed by this
|
78 |
+
specifier.
|
79 |
+
"""
|
80 |
+
|
81 |
+
@abc.abstractmethod
|
82 |
+
def contains(self, item: str, prereleases: Optional[bool] = None) -> bool:
|
83 |
+
"""
|
84 |
+
Determines if the given item is contained within this specifier.
|
85 |
+
"""
|
86 |
+
|
87 |
+
@abc.abstractmethod
|
88 |
+
def filter(
|
89 |
+
self, iterable: Iterable[VersionTypeVar], prereleases: Optional[bool] = None
|
90 |
+
) -> Iterable[VersionTypeVar]:
|
91 |
+
"""
|
92 |
+
Takes an iterable of items and filters them so that only items which
|
93 |
+
are contained within this specifier are allowed in it.
|
94 |
+
"""
|
95 |
+
|
96 |
+
|
97 |
+
class _IndividualSpecifier(BaseSpecifier):
|
98 |
+
|
99 |
+
_operators: Dict[str, str] = {}
|
100 |
+
_regex: Pattern[str]
|
101 |
+
|
102 |
+
def __init__(self, spec: str = "", prereleases: Optional[bool] = None) -> None:
|
103 |
+
match = self._regex.search(spec)
|
104 |
+
if not match:
|
105 |
+
raise InvalidSpecifier(f"Invalid specifier: '{spec}'")
|
106 |
+
|
107 |
+
self._spec: Tuple[str, str] = (
|
108 |
+
match.group("operator").strip(),
|
109 |
+
match.group("version").strip(),
|
110 |
+
)
|
111 |
+
|
112 |
+
# Store whether or not this Specifier should accept prereleases
|
113 |
+
self._prereleases = prereleases
|
114 |
+
|
115 |
+
def __repr__(self) -> str:
|
116 |
+
pre = (
|
117 |
+
f", prereleases={self.prereleases!r}"
|
118 |
+
if self._prereleases is not None
|
119 |
+
else ""
|
120 |
+
)
|
121 |
+
|
122 |
+
return "<{}({!r}{})>".format(self.__class__.__name__, str(self), pre)
|
123 |
+
|
124 |
+
def __str__(self) -> str:
|
125 |
+
return "{}{}".format(*self._spec)
|
126 |
+
|
127 |
+
@property
|
128 |
+
def _canonical_spec(self) -> Tuple[str, str]:
|
129 |
+
return self._spec[0], canonicalize_version(self._spec[1])
|
130 |
+
|
131 |
+
def __hash__(self) -> int:
|
132 |
+
return hash(self._canonical_spec)
|
133 |
+
|
134 |
+
def __eq__(self, other: object) -> bool:
|
135 |
+
if isinstance(other, str):
|
136 |
+
try:
|
137 |
+
other = self.__class__(str(other))
|
138 |
+
except InvalidSpecifier:
|
139 |
+
return NotImplemented
|
140 |
+
elif not isinstance(other, self.__class__):
|
141 |
+
return NotImplemented
|
142 |
+
|
143 |
+
return self._canonical_spec == other._canonical_spec
|
144 |
+
|
145 |
+
def __ne__(self, other: object) -> bool:
|
146 |
+
if isinstance(other, str):
|
147 |
+
try:
|
148 |
+
other = self.__class__(str(other))
|
149 |
+
except InvalidSpecifier:
|
150 |
+
return NotImplemented
|
151 |
+
elif not isinstance(other, self.__class__):
|
152 |
+
return NotImplemented
|
153 |
+
|
154 |
+
return self._spec != other._spec
|
155 |
+
|
156 |
+
def _get_operator(self, op: str) -> CallableOperator:
|
157 |
+
operator_callable: CallableOperator = getattr(
|
158 |
+
self, f"_compare_{self._operators[op]}"
|
159 |
+
)
|
160 |
+
return operator_callable
|
161 |
+
|
162 |
+
def _coerce_version(self, version: UnparsedVersion) -> ParsedVersion:
|
163 |
+
if not isinstance(version, (LegacyVersion, Version)):
|
164 |
+
version = parse(version)
|
165 |
+
return version
|
166 |
+
|
167 |
+
@property
|
168 |
+
def operator(self) -> str:
|
169 |
+
return self._spec[0]
|
170 |
+
|
171 |
+
@property
|
172 |
+
def version(self) -> str:
|
173 |
+
return self._spec[1]
|
174 |
+
|
175 |
+
@property
|
176 |
+
def prereleases(self) -> Optional[bool]:
|
177 |
+
return self._prereleases
|
178 |
+
|
179 |
+
@prereleases.setter
|
180 |
+
def prereleases(self, value: bool) -> None:
|
181 |
+
self._prereleases = value
|
182 |
+
|
183 |
+
def __contains__(self, item: str) -> bool:
|
184 |
+
return self.contains(item)
|
185 |
+
|
186 |
+
def contains(
|
187 |
+
self, item: UnparsedVersion, prereleases: Optional[bool] = None
|
188 |
+
) -> bool:
|
189 |
+
|
190 |
+
# Determine if prereleases are to be allowed or not.
|
191 |
+
if prereleases is None:
|
192 |
+
prereleases = self.prereleases
|
193 |
+
|
194 |
+
# Normalize item to a Version or LegacyVersion, this allows us to have
|
195 |
+
# a shortcut for ``"2.0" in Specifier(">=2")
|
196 |
+
normalized_item = self._coerce_version(item)
|
197 |
+
|
198 |
+
# Determine if we should be supporting prereleases in this specifier
|
199 |
+
# or not, if we do not support prereleases than we can short circuit
|
200 |
+
# logic if this version is a prereleases.
|
201 |
+
if normalized_item.is_prerelease and not prereleases:
|
202 |
+
return False
|
203 |
+
|
204 |
+
# Actually do the comparison to determine if this item is contained
|
205 |
+
# within this Specifier or not.
|
206 |
+
operator_callable: CallableOperator = self._get_operator(self.operator)
|
207 |
+
return operator_callable(normalized_item, self.version)
|
208 |
+
|
209 |
+
def filter(
|
210 |
+
self, iterable: Iterable[VersionTypeVar], prereleases: Optional[bool] = None
|
211 |
+
) -> Iterable[VersionTypeVar]:
|
212 |
+
|
213 |
+
yielded = False
|
214 |
+
found_prereleases = []
|
215 |
+
|
216 |
+
kw = {"prereleases": prereleases if prereleases is not None else True}
|
217 |
+
|
218 |
+
# Attempt to iterate over all the values in the iterable and if any of
|
219 |
+
# them match, yield them.
|
220 |
+
for version in iterable:
|
221 |
+
parsed_version = self._coerce_version(version)
|
222 |
+
|
223 |
+
if self.contains(parsed_version, **kw):
|
224 |
+
# If our version is a prerelease, and we were not set to allow
|
225 |
+
# prereleases, then we'll store it for later in case nothing
|
226 |
+
# else matches this specifier.
|
227 |
+
if parsed_version.is_prerelease and not (
|
228 |
+
prereleases or self.prereleases
|
229 |
+
):
|
230 |
+
found_prereleases.append(version)
|
231 |
+
# Either this is not a prerelease, or we should have been
|
232 |
+
# accepting prereleases from the beginning.
|
233 |
+
else:
|
234 |
+
yielded = True
|
235 |
+
yield version
|
236 |
+
|
237 |
+
# Now that we've iterated over everything, determine if we've yielded
|
238 |
+
# any values, and if we have not and we have any prereleases stored up
|
239 |
+
# then we will go ahead and yield the prereleases.
|
240 |
+
if not yielded and found_prereleases:
|
241 |
+
for version in found_prereleases:
|
242 |
+
yield version
|
243 |
+
|
244 |
+
|
245 |
+
class LegacySpecifier(_IndividualSpecifier):
|
246 |
+
|
247 |
+
_regex_str = r"""
|
248 |
+
(?P<operator>(==|!=|<=|>=|<|>))
|
249 |
+
\s*
|
250 |
+
(?P<version>
|
251 |
+
[^,;\s)]* # Since this is a "legacy" specifier, and the version
|
252 |
+
# string can be just about anything, we match everything
|
253 |
+
# except for whitespace, a semi-colon for marker support,
|
254 |
+
# a closing paren since versions can be enclosed in
|
255 |
+
# them, and a comma since it's a version separator.
|
256 |
+
)
|
257 |
+
"""
|
258 |
+
|
259 |
+
_regex = re.compile(r"^\s*" + _regex_str + r"\s*$", re.VERBOSE | re.IGNORECASE)
|
260 |
+
|
261 |
+
_operators = {
|
262 |
+
"==": "equal",
|
263 |
+
"!=": "not_equal",
|
264 |
+
"<=": "less_than_equal",
|
265 |
+
">=": "greater_than_equal",
|
266 |
+
"<": "less_than",
|
267 |
+
">": "greater_than",
|
268 |
+
}
|
269 |
+
|
270 |
+
def __init__(self, spec: str = "", prereleases: Optional[bool] = None) -> None:
|
271 |
+
super().__init__(spec, prereleases)
|
272 |
+
|
273 |
+
warnings.warn(
|
274 |
+
"Creating a LegacyVersion has been deprecated and will be "
|
275 |
+
"removed in the next major release",
|
276 |
+
DeprecationWarning,
|
277 |
+
)
|
278 |
+
|
279 |
+
def _coerce_version(self, version: UnparsedVersion) -> LegacyVersion:
|
280 |
+
if not isinstance(version, LegacyVersion):
|
281 |
+
version = LegacyVersion(str(version))
|
282 |
+
return version
|
283 |
+
|
284 |
+
def _compare_equal(self, prospective: LegacyVersion, spec: str) -> bool:
|
285 |
+
return prospective == self._coerce_version(spec)
|
286 |
+
|
287 |
+
def _compare_not_equal(self, prospective: LegacyVersion, spec: str) -> bool:
|
288 |
+
return prospective != self._coerce_version(spec)
|
289 |
+
|
290 |
+
def _compare_less_than_equal(self, prospective: LegacyVersion, spec: str) -> bool:
|
291 |
+
return prospective <= self._coerce_version(spec)
|
292 |
+
|
293 |
+
def _compare_greater_than_equal(
|
294 |
+
self, prospective: LegacyVersion, spec: str
|
295 |
+
) -> bool:
|
296 |
+
return prospective >= self._coerce_version(spec)
|
297 |
+
|
298 |
+
def _compare_less_than(self, prospective: LegacyVersion, spec: str) -> bool:
|
299 |
+
return prospective < self._coerce_version(spec)
|
300 |
+
|
301 |
+
def _compare_greater_than(self, prospective: LegacyVersion, spec: str) -> bool:
|
302 |
+
return prospective > self._coerce_version(spec)
|
303 |
+
|
304 |
+
|
305 |
+
def _require_version_compare(
|
306 |
+
fn: Callable[["Specifier", ParsedVersion, str], bool]
|
307 |
+
) -> Callable[["Specifier", ParsedVersion, str], bool]:
|
308 |
+
@functools.wraps(fn)
|
309 |
+
def wrapped(self: "Specifier", prospective: ParsedVersion, spec: str) -> bool:
|
310 |
+
if not isinstance(prospective, Version):
|
311 |
+
return False
|
312 |
+
return fn(self, prospective, spec)
|
313 |
+
|
314 |
+
return wrapped
|
315 |
+
|
316 |
+
|
317 |
+
class Specifier(_IndividualSpecifier):
|
318 |
+
|
319 |
+
_regex_str = r"""
|
320 |
+
(?P<operator>(~=|==|!=|<=|>=|<|>|===))
|
321 |
+
(?P<version>
|
322 |
+
(?:
|
323 |
+
# The identity operators allow for an escape hatch that will
|
324 |
+
# do an exact string match of the version you wish to install.
|
325 |
+
# This will not be parsed by PEP 440 and we cannot determine
|
326 |
+
# any semantic meaning from it. This operator is discouraged
|
327 |
+
# but included entirely as an escape hatch.
|
328 |
+
(?<====) # Only match for the identity operator
|
329 |
+
\s*
|
330 |
+
[^\s]* # We just match everything, except for whitespace
|
331 |
+
# since we are only testing for strict identity.
|
332 |
+
)
|
333 |
+
|
|
334 |
+
(?:
|
335 |
+
# The (non)equality operators allow for wild card and local
|
336 |
+
# versions to be specified so we have to define these two
|
337 |
+
# operators separately to enable that.
|
338 |
+
(?<===|!=) # Only match for equals and not equals
|
339 |
+
|
340 |
+
\s*
|
341 |
+
v?
|
342 |
+
(?:[0-9]+!)? # epoch
|
343 |
+
[0-9]+(?:\.[0-9]+)* # release
|
344 |
+
(?: # pre release
|
345 |
+
[-_\.]?
|
346 |
+
(a|b|c|rc|alpha|beta|pre|preview)
|
347 |
+
[-_\.]?
|
348 |
+
[0-9]*
|
349 |
+
)?
|
350 |
+
(?: # post release
|
351 |
+
(?:-[0-9]+)|(?:[-_\.]?(post|rev|r)[-_\.]?[0-9]*)
|
352 |
+
)?
|
353 |
+
|
354 |
+
# You cannot use a wild card and a dev or local version
|
355 |
+
# together so group them with a | and make them optional.
|
356 |
+
(?:
|
357 |
+
(?:[-_\.]?dev[-_\.]?[0-9]*)? # dev release
|
358 |
+
(?:\+[a-z0-9]+(?:[-_\.][a-z0-9]+)*)? # local
|
359 |
+
|
|
360 |
+
\.\* # Wild card syntax of .*
|
361 |
+
)?
|
362 |
+
)
|
363 |
+
|
|
364 |
+
(?:
|
365 |
+
# The compatible operator requires at least two digits in the
|
366 |
+
# release segment.
|
367 |
+
(?<=~=) # Only match for the compatible operator
|
368 |
+
|
369 |
+
\s*
|
370 |
+
v?
|
371 |
+
(?:[0-9]+!)? # epoch
|
372 |
+
[0-9]+(?:\.[0-9]+)+ # release (We have a + instead of a *)
|
373 |
+
(?: # pre release
|
374 |
+
[-_\.]?
|
375 |
+
(a|b|c|rc|alpha|beta|pre|preview)
|
376 |
+
[-_\.]?
|
377 |
+
[0-9]*
|
378 |
+
)?
|
379 |
+
(?: # post release
|
380 |
+
(?:-[0-9]+)|(?:[-_\.]?(post|rev|r)[-_\.]?[0-9]*)
|
381 |
+
)?
|
382 |
+
(?:[-_\.]?dev[-_\.]?[0-9]*)? # dev release
|
383 |
+
)
|
384 |
+
|
|
385 |
+
(?:
|
386 |
+
# All other operators only allow a sub set of what the
|
387 |
+
# (non)equality operators do. Specifically they do not allow
|
388 |
+
# local versions to be specified nor do they allow the prefix
|
389 |
+
# matching wild cards.
|
390 |
+
(?<!==|!=|~=) # We have special cases for these
|
391 |
+
# operators so we want to make sure they
|
392 |
+
# don't match here.
|
393 |
+
|
394 |
+
\s*
|
395 |
+
v?
|
396 |
+
(?:[0-9]+!)? # epoch
|
397 |
+
[0-9]+(?:\.[0-9]+)* # release
|
398 |
+
(?: # pre release
|
399 |
+
[-_\.]?
|
400 |
+
(a|b|c|rc|alpha|beta|pre|preview)
|
401 |
+
[-_\.]?
|
402 |
+
[0-9]*
|
403 |
+
)?
|
404 |
+
(?: # post release
|
405 |
+
(?:-[0-9]+)|(?:[-_\.]?(post|rev|r)[-_\.]?[0-9]*)
|
406 |
+
)?
|
407 |
+
(?:[-_\.]?dev[-_\.]?[0-9]*)? # dev release
|
408 |
+
)
|
409 |
+
)
|
410 |
+
"""
|
411 |
+
|
412 |
+
_regex = re.compile(r"^\s*" + _regex_str + r"\s*$", re.VERBOSE | re.IGNORECASE)
|
413 |
+
|
414 |
+
_operators = {
|
415 |
+
"~=": "compatible",
|
416 |
+
"==": "equal",
|
417 |
+
"!=": "not_equal",
|
418 |
+
"<=": "less_than_equal",
|
419 |
+
">=": "greater_than_equal",
|
420 |
+
"<": "less_than",
|
421 |
+
">": "greater_than",
|
422 |
+
"===": "arbitrary",
|
423 |
+
}
|
424 |
+
|
425 |
+
@_require_version_compare
|
426 |
+
def _compare_compatible(self, prospective: ParsedVersion, spec: str) -> bool:
|
427 |
+
|
428 |
+
# Compatible releases have an equivalent combination of >= and ==. That
|
429 |
+
# is that ~=2.2 is equivalent to >=2.2,==2.*. This allows us to
|
430 |
+
# implement this in terms of the other specifiers instead of
|
431 |
+
# implementing it ourselves. The only thing we need to do is construct
|
432 |
+
# the other specifiers.
|
433 |
+
|
434 |
+
# We want everything but the last item in the version, but we want to
|
435 |
+
# ignore suffix segments.
|
436 |
+
prefix = ".".join(
|
437 |
+
list(itertools.takewhile(_is_not_suffix, _version_split(spec)))[:-1]
|
438 |
+
)
|
439 |
+
|
440 |
+
# Add the prefix notation to the end of our string
|
441 |
+
prefix += ".*"
|
442 |
+
|
443 |
+
return self._get_operator(">=")(prospective, spec) and self._get_operator("==")(
|
444 |
+
prospective, prefix
|
445 |
+
)
|
446 |
+
|
447 |
+
@_require_version_compare
|
448 |
+
def _compare_equal(self, prospective: ParsedVersion, spec: str) -> bool:
|
449 |
+
|
450 |
+
# We need special logic to handle prefix matching
|
451 |
+
if spec.endswith(".*"):
|
452 |
+
# In the case of prefix matching we want to ignore local segment.
|
453 |
+
prospective = Version(prospective.public)
|
454 |
+
# Split the spec out by dots, and pretend that there is an implicit
|
455 |
+
# dot in between a release segment and a pre-release segment.
|
456 |
+
split_spec = _version_split(spec[:-2]) # Remove the trailing .*
|
457 |
+
|
458 |
+
# Split the prospective version out by dots, and pretend that there
|
459 |
+
# is an implicit dot in between a release segment and a pre-release
|
460 |
+
# segment.
|
461 |
+
split_prospective = _version_split(str(prospective))
|
462 |
+
|
463 |
+
# Shorten the prospective version to be the same length as the spec
|
464 |
+
# so that we can determine if the specifier is a prefix of the
|
465 |
+
# prospective version or not.
|
466 |
+
shortened_prospective = split_prospective[: len(split_spec)]
|
467 |
+
|
468 |
+
# Pad out our two sides with zeros so that they both equal the same
|
469 |
+
# length.
|
470 |
+
padded_spec, padded_prospective = _pad_version(
|
471 |
+
split_spec, shortened_prospective
|
472 |
+
)
|
473 |
+
|
474 |
+
return padded_prospective == padded_spec
|
475 |
+
else:
|
476 |
+
# Convert our spec string into a Version
|
477 |
+
spec_version = Version(spec)
|
478 |
+
|
479 |
+
# If the specifier does not have a local segment, then we want to
|
480 |
+
# act as if the prospective version also does not have a local
|
481 |
+
# segment.
|
482 |
+
if not spec_version.local:
|
483 |
+
prospective = Version(prospective.public)
|
484 |
+
|
485 |
+
return prospective == spec_version
|
486 |
+
|
487 |
+
@_require_version_compare
|
488 |
+
def _compare_not_equal(self, prospective: ParsedVersion, spec: str) -> bool:
|
489 |
+
return not self._compare_equal(prospective, spec)
|
490 |
+
|
491 |
+
@_require_version_compare
|
492 |
+
def _compare_less_than_equal(self, prospective: ParsedVersion, spec: str) -> bool:
|
493 |
+
|
494 |
+
# NB: Local version identifiers are NOT permitted in the version
|
495 |
+
# specifier, so local version labels can be universally removed from
|
496 |
+
# the prospective version.
|
497 |
+
return Version(prospective.public) <= Version(spec)
|
498 |
+
|
499 |
+
@_require_version_compare
|
500 |
+
def _compare_greater_than_equal(
|
501 |
+
self, prospective: ParsedVersion, spec: str
|
502 |
+
) -> bool:
|
503 |
+
|
504 |
+
# NB: Local version identifiers are NOT permitted in the version
|
505 |
+
# specifier, so local version labels can be universally removed from
|
506 |
+
# the prospective version.
|
507 |
+
return Version(prospective.public) >= Version(spec)
|
508 |
+
|
509 |
+
@_require_version_compare
|
510 |
+
def _compare_less_than(self, prospective: ParsedVersion, spec_str: str) -> bool:
|
511 |
+
|
512 |
+
# Convert our spec to a Version instance, since we'll want to work with
|
513 |
+
# it as a version.
|
514 |
+
spec = Version(spec_str)
|
515 |
+
|
516 |
+
# Check to see if the prospective version is less than the spec
|
517 |
+
# version. If it's not we can short circuit and just return False now
|
518 |
+
# instead of doing extra unneeded work.
|
519 |
+
if not prospective < spec:
|
520 |
+
return False
|
521 |
+
|
522 |
+
# This special case is here so that, unless the specifier itself
|
523 |
+
# includes is a pre-release version, that we do not accept pre-release
|
524 |
+
# versions for the version mentioned in the specifier (e.g. <3.1 should
|
525 |
+
# not match 3.1.dev0, but should match 3.0.dev0).
|
526 |
+
if not spec.is_prerelease and prospective.is_prerelease:
|
527 |
+
if Version(prospective.base_version) == Version(spec.base_version):
|
528 |
+
return False
|
529 |
+
|
530 |
+
# If we've gotten to here, it means that prospective version is both
|
531 |
+
# less than the spec version *and* it's not a pre-release of the same
|
532 |
+
# version in the spec.
|
533 |
+
return True
|
534 |
+
|
535 |
+
@_require_version_compare
|
536 |
+
def _compare_greater_than(self, prospective: ParsedVersion, spec_str: str) -> bool:
|
537 |
+
|
538 |
+
# Convert our spec to a Version instance, since we'll want to work with
|
539 |
+
# it as a version.
|
540 |
+
spec = Version(spec_str)
|
541 |
+
|
542 |
+
# Check to see if the prospective version is greater than the spec
|
543 |
+
# version. If it's not we can short circuit and just return False now
|
544 |
+
# instead of doing extra unneeded work.
|
545 |
+
if not prospective > spec:
|
546 |
+
return False
|
547 |
+
|
548 |
+
# This special case is here so that, unless the specifier itself
|
549 |
+
# includes is a post-release version, that we do not accept
|
550 |
+
# post-release versions for the version mentioned in the specifier
|
551 |
+
# (e.g. >3.1 should not match 3.0.post0, but should match 3.2.post0).
|
552 |
+
if not spec.is_postrelease and prospective.is_postrelease:
|
553 |
+
if Version(prospective.base_version) == Version(spec.base_version):
|
554 |
+
return False
|
555 |
+
|
556 |
+
# Ensure that we do not allow a local version of the version mentioned
|
557 |
+
# in the specifier, which is technically greater than, to match.
|
558 |
+
if prospective.local is not None:
|
559 |
+
if Version(prospective.base_version) == Version(spec.base_version):
|
560 |
+
return False
|
561 |
+
|
562 |
+
# If we've gotten to here, it means that prospective version is both
|
563 |
+
# greater than the spec version *and* it's not a pre-release of the
|
564 |
+
# same version in the spec.
|
565 |
+
return True
|
566 |
+
|
567 |
+
def _compare_arbitrary(self, prospective: Version, spec: str) -> bool:
|
568 |
+
return str(prospective).lower() == str(spec).lower()
|
569 |
+
|
570 |
+
@property
|
571 |
+
def prereleases(self) -> bool:
|
572 |
+
|
573 |
+
# If there is an explicit prereleases set for this, then we'll just
|
574 |
+
# blindly use that.
|
575 |
+
if self._prereleases is not None:
|
576 |
+
return self._prereleases
|
577 |
+
|
578 |
+
# Look at all of our specifiers and determine if they are inclusive
|
579 |
+
# operators, and if they are if they are including an explicit
|
580 |
+
# prerelease.
|
581 |
+
operator, version = self._spec
|
582 |
+
if operator in ["==", ">=", "<=", "~=", "==="]:
|
583 |
+
# The == specifier can include a trailing .*, if it does we
|
584 |
+
# want to remove before parsing.
|
585 |
+
if operator == "==" and version.endswith(".*"):
|
586 |
+
version = version[:-2]
|
587 |
+
|
588 |
+
# Parse the version, and if it is a pre-release than this
|
589 |
+
# specifier allows pre-releases.
|
590 |
+
if parse(version).is_prerelease:
|
591 |
+
return True
|
592 |
+
|
593 |
+
return False
|
594 |
+
|
595 |
+
@prereleases.setter
|
596 |
+
def prereleases(self, value: bool) -> None:
|
597 |
+
self._prereleases = value
|
598 |
+
|
599 |
+
|
600 |
+
_prefix_regex = re.compile(r"^([0-9]+)((?:a|b|c|rc)[0-9]+)$")
|
601 |
+
|
602 |
+
|
603 |
+
def _version_split(version: str) -> List[str]:
|
604 |
+
result: List[str] = []
|
605 |
+
for item in version.split("."):
|
606 |
+
match = _prefix_regex.search(item)
|
607 |
+
if match:
|
608 |
+
result.extend(match.groups())
|
609 |
+
else:
|
610 |
+
result.append(item)
|
611 |
+
return result
|
612 |
+
|
613 |
+
|
614 |
+
def _is_not_suffix(segment: str) -> bool:
|
615 |
+
return not any(
|
616 |
+
segment.startswith(prefix) for prefix in ("dev", "a", "b", "rc", "post")
|
617 |
+
)
|
618 |
+
|
619 |
+
|
620 |
+
def _pad_version(left: List[str], right: List[str]) -> Tuple[List[str], List[str]]:
|
621 |
+
left_split, right_split = [], []
|
622 |
+
|
623 |
+
# Get the release segment of our versions
|
624 |
+
left_split.append(list(itertools.takewhile(lambda x: x.isdigit(), left)))
|
625 |
+
right_split.append(list(itertools.takewhile(lambda x: x.isdigit(), right)))
|
626 |
+
|
627 |
+
# Get the rest of our versions
|
628 |
+
left_split.append(left[len(left_split[0]) :])
|
629 |
+
right_split.append(right[len(right_split[0]) :])
|
630 |
+
|
631 |
+
# Insert our padding
|
632 |
+
left_split.insert(1, ["0"] * max(0, len(right_split[0]) - len(left_split[0])))
|
633 |
+
right_split.insert(1, ["0"] * max(0, len(left_split[0]) - len(right_split[0])))
|
634 |
+
|
635 |
+
return (list(itertools.chain(*left_split)), list(itertools.chain(*right_split)))
|
636 |
+
|
637 |
+
|
638 |
+
class SpecifierSet(BaseSpecifier):
|
639 |
+
def __init__(
|
640 |
+
self, specifiers: str = "", prereleases: Optional[bool] = None
|
641 |
+
) -> None:
|
642 |
+
|
643 |
+
# Split on , to break each individual specifier into it's own item, and
|
644 |
+
# strip each item to remove leading/trailing whitespace.
|
645 |
+
split_specifiers = [s.strip() for s in specifiers.split(",") if s.strip()]
|
646 |
+
|
647 |
+
# Parsed each individual specifier, attempting first to make it a
|
648 |
+
# Specifier and falling back to a LegacySpecifier.
|
649 |
+
parsed: Set[_IndividualSpecifier] = set()
|
650 |
+
for specifier in split_specifiers:
|
651 |
+
try:
|
652 |
+
parsed.add(Specifier(specifier))
|
653 |
+
except InvalidSpecifier:
|
654 |
+
parsed.add(LegacySpecifier(specifier))
|
655 |
+
|
656 |
+
# Turn our parsed specifiers into a frozen set and save them for later.
|
657 |
+
self._specs = frozenset(parsed)
|
658 |
+
|
659 |
+
# Store our prereleases value so we can use it later to determine if
|
660 |
+
# we accept prereleases or not.
|
661 |
+
self._prereleases = prereleases
|
662 |
+
|
663 |
+
def __repr__(self) -> str:
|
664 |
+
pre = (
|
665 |
+
f", prereleases={self.prereleases!r}"
|
666 |
+
if self._prereleases is not None
|
667 |
+
else ""
|
668 |
+
)
|
669 |
+
|
670 |
+
return "<SpecifierSet({!r}{})>".format(str(self), pre)
|
671 |
+
|
672 |
+
def __str__(self) -> str:
|
673 |
+
return ",".join(sorted(str(s) for s in self._specs))
|
674 |
+
|
675 |
+
def __hash__(self) -> int:
|
676 |
+
return hash(self._specs)
|
677 |
+
|
678 |
+
def __and__(self, other: Union["SpecifierSet", str]) -> "SpecifierSet":
|
679 |
+
if isinstance(other, str):
|
680 |
+
other = SpecifierSet(other)
|
681 |
+
elif not isinstance(other, SpecifierSet):
|
682 |
+
return NotImplemented
|
683 |
+
|
684 |
+
specifier = SpecifierSet()
|
685 |
+
specifier._specs = frozenset(self._specs | other._specs)
|
686 |
+
|
687 |
+
if self._prereleases is None and other._prereleases is not None:
|
688 |
+
specifier._prereleases = other._prereleases
|
689 |
+
elif self._prereleases is not None and other._prereleases is None:
|
690 |
+
specifier._prereleases = self._prereleases
|
691 |
+
elif self._prereleases == other._prereleases:
|
692 |
+
specifier._prereleases = self._prereleases
|
693 |
+
else:
|
694 |
+
raise ValueError(
|
695 |
+
"Cannot combine SpecifierSets with True and False prerelease "
|
696 |
+
"overrides."
|
697 |
+
)
|
698 |
+
|
699 |
+
return specifier
|
700 |
+
|
701 |
+
def __eq__(self, other: object) -> bool:
|
702 |
+
if isinstance(other, (str, _IndividualSpecifier)):
|
703 |
+
other = SpecifierSet(str(other))
|
704 |
+
elif not isinstance(other, SpecifierSet):
|
705 |
+
return NotImplemented
|
706 |
+
|
707 |
+
return self._specs == other._specs
|
708 |
+
|
709 |
+
def __ne__(self, other: object) -> bool:
|
710 |
+
if isinstance(other, (str, _IndividualSpecifier)):
|
711 |
+
other = SpecifierSet(str(other))
|
712 |
+
elif not isinstance(other, SpecifierSet):
|
713 |
+
return NotImplemented
|
714 |
+
|
715 |
+
return self._specs != other._specs
|
716 |
+
|
717 |
+
def __len__(self) -> int:
|
718 |
+
return len(self._specs)
|
719 |
+
|
720 |
+
def __iter__(self) -> Iterator[_IndividualSpecifier]:
|
721 |
+
return iter(self._specs)
|
722 |
+
|
723 |
+
@property
|
724 |
+
def prereleases(self) -> Optional[bool]:
|
725 |
+
|
726 |
+
# If we have been given an explicit prerelease modifier, then we'll
|
727 |
+
# pass that through here.
|
728 |
+
if self._prereleases is not None:
|
729 |
+
return self._prereleases
|
730 |
+
|
731 |
+
# If we don't have any specifiers, and we don't have a forced value,
|
732 |
+
# then we'll just return None since we don't know if this should have
|
733 |
+
# pre-releases or not.
|
734 |
+
if not self._specs:
|
735 |
+
return None
|
736 |
+
|
737 |
+
# Otherwise we'll see if any of the given specifiers accept
|
738 |
+
# prereleases, if any of them do we'll return True, otherwise False.
|
739 |
+
return any(s.prereleases for s in self._specs)
|
740 |
+
|
741 |
+
@prereleases.setter
|
742 |
+
def prereleases(self, value: bool) -> None:
|
743 |
+
self._prereleases = value
|
744 |
+
|
745 |
+
def __contains__(self, item: UnparsedVersion) -> bool:
|
746 |
+
return self.contains(item)
|
747 |
+
|
748 |
+
def contains(
|
749 |
+
self, item: UnparsedVersion, prereleases: Optional[bool] = None
|
750 |
+
) -> bool:
|
751 |
+
|
752 |
+
# Ensure that our item is a Version or LegacyVersion instance.
|
753 |
+
if not isinstance(item, (LegacyVersion, Version)):
|
754 |
+
item = parse(item)
|
755 |
+
|
756 |
+
# Determine if we're forcing a prerelease or not, if we're not forcing
|
757 |
+
# one for this particular filter call, then we'll use whatever the
|
758 |
+
# SpecifierSet thinks for whether or not we should support prereleases.
|
759 |
+
if prereleases is None:
|
760 |
+
prereleases = self.prereleases
|
761 |
+
|
762 |
+
# We can determine if we're going to allow pre-releases by looking to
|
763 |
+
# see if any of the underlying items supports them. If none of them do
|
764 |
+
# and this item is a pre-release then we do not allow it and we can
|
765 |
+
# short circuit that here.
|
766 |
+
# Note: This means that 1.0.dev1 would not be contained in something
|
767 |
+
# like >=1.0.devabc however it would be in >=1.0.debabc,>0.0.dev0
|
768 |
+
if not prereleases and item.is_prerelease:
|
769 |
+
return False
|
770 |
+
|
771 |
+
# We simply dispatch to the underlying specs here to make sure that the
|
772 |
+
# given version is contained within all of them.
|
773 |
+
# Note: This use of all() here means that an empty set of specifiers
|
774 |
+
# will always return True, this is an explicit design decision.
|
775 |
+
return all(s.contains(item, prereleases=prereleases) for s in self._specs)
|
776 |
+
|
777 |
+
def filter(
|
778 |
+
self, iterable: Iterable[VersionTypeVar], prereleases: Optional[bool] = None
|
779 |
+
) -> Iterable[VersionTypeVar]:
|
780 |
+
|
781 |
+
# Determine if we're forcing a prerelease or not, if we're not forcing
|
782 |
+
# one for this particular filter call, then we'll use whatever the
|
783 |
+
# SpecifierSet thinks for whether or not we should support prereleases.
|
784 |
+
if prereleases is None:
|
785 |
+
prereleases = self.prereleases
|
786 |
+
|
787 |
+
# If we have any specifiers, then we want to wrap our iterable in the
|
788 |
+
# filter method for each one, this will act as a logical AND amongst
|
789 |
+
# each specifier.
|
790 |
+
if self._specs:
|
791 |
+
for spec in self._specs:
|
792 |
+
iterable = spec.filter(iterable, prereleases=bool(prereleases))
|
793 |
+
return iterable
|
794 |
+
# If we do not have any specifiers, then we need to have a rough filter
|
795 |
+
# which will filter out any pre-releases, unless there are no final
|
796 |
+
# releases, and which will filter out LegacyVersion in general.
|
797 |
+
else:
|
798 |
+
filtered: List[VersionTypeVar] = []
|
799 |
+
found_prereleases: List[VersionTypeVar] = []
|
800 |
+
|
801 |
+
item: UnparsedVersion
|
802 |
+
parsed_version: Union[Version, LegacyVersion]
|
803 |
+
|
804 |
+
for item in iterable:
|
805 |
+
# Ensure that we some kind of Version class for this item.
|
806 |
+
if not isinstance(item, (LegacyVersion, Version)):
|
807 |
+
parsed_version = parse(item)
|
808 |
+
else:
|
809 |
+
parsed_version = item
|
810 |
+
|
811 |
+
# Filter out any item which is parsed as a LegacyVersion
|
812 |
+
if isinstance(parsed_version, LegacyVersion):
|
813 |
+
continue
|
814 |
+
|
815 |
+
# Store any item which is a pre-release for later unless we've
|
816 |
+
# already found a final version or we are accepting prereleases
|
817 |
+
if parsed_version.is_prerelease and not prereleases:
|
818 |
+
if not filtered:
|
819 |
+
found_prereleases.append(item)
|
820 |
+
else:
|
821 |
+
filtered.append(item)
|
822 |
+
|
823 |
+
# If we've found no items except for pre-releases, then we'll go
|
824 |
+
# ahead and use the pre-releases
|
825 |
+
if not filtered and found_prereleases and prereleases is None:
|
826 |
+
return found_prereleases
|
827 |
+
|
828 |
+
return filtered
|
public/gpt-2/packaging/tags.py
ADDED
@@ -0,0 +1,484 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This file is dual licensed under the terms of the Apache License, Version
|
2 |
+
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
|
3 |
+
# for complete details.
|
4 |
+
|
5 |
+
import logging
|
6 |
+
import platform
|
7 |
+
import sys
|
8 |
+
import sysconfig
|
9 |
+
from importlib.machinery import EXTENSION_SUFFIXES
|
10 |
+
from typing import (
|
11 |
+
Dict,
|
12 |
+
FrozenSet,
|
13 |
+
Iterable,
|
14 |
+
Iterator,
|
15 |
+
List,
|
16 |
+
Optional,
|
17 |
+
Sequence,
|
18 |
+
Tuple,
|
19 |
+
Union,
|
20 |
+
cast,
|
21 |
+
)
|
22 |
+
|
23 |
+
from . import _manylinux, _musllinux
|
24 |
+
|
25 |
+
logger = logging.getLogger(__name__)
|
26 |
+
|
27 |
+
PythonVersion = Sequence[int]
|
28 |
+
MacVersion = Tuple[int, int]
|
29 |
+
|
30 |
+
INTERPRETER_SHORT_NAMES: Dict[str, str] = {
|
31 |
+
"python": "py", # Generic.
|
32 |
+
"cpython": "cp",
|
33 |
+
"pypy": "pp",
|
34 |
+
"ironpython": "ip",
|
35 |
+
"jython": "jy",
|
36 |
+
}
|
37 |
+
|
38 |
+
|
39 |
+
_32_BIT_INTERPRETER = sys.maxsize <= 2 ** 32
|
40 |
+
|
41 |
+
|
42 |
+
class Tag:
|
43 |
+
"""
|
44 |
+
A representation of the tag triple for a wheel.
|
45 |
+
|
46 |
+
Instances are considered immutable and thus are hashable. Equality checking
|
47 |
+
is also supported.
|
48 |
+
"""
|
49 |
+
|
50 |
+
__slots__ = ["_interpreter", "_abi", "_platform", "_hash"]
|
51 |
+
|
52 |
+
def __init__(self, interpreter: str, abi: str, platform: str) -> None:
|
53 |
+
self._interpreter = interpreter.lower()
|
54 |
+
self._abi = abi.lower()
|
55 |
+
self._platform = platform.lower()
|
56 |
+
# The __hash__ of every single element in a Set[Tag] will be evaluated each time
|
57 |
+
# that a set calls its `.disjoint()` method, which may be called hundreds of
|
58 |
+
# times when scanning a page of links for packages with tags matching that
|
59 |
+
# Set[Tag]. Pre-computing the value here produces significant speedups for
|
60 |
+
# downstream consumers.
|
61 |
+
self._hash = hash((self._interpreter, self._abi, self._platform))
|
62 |
+
|
63 |
+
@property
|
64 |
+
def interpreter(self) -> str:
|
65 |
+
return self._interpreter
|
66 |
+
|
67 |
+
@property
|
68 |
+
def abi(self) -> str:
|
69 |
+
return self._abi
|
70 |
+
|
71 |
+
@property
|
72 |
+
def platform(self) -> str:
|
73 |
+
return self._platform
|
74 |
+
|
75 |
+
def __eq__(self, other: object) -> bool:
|
76 |
+
if not isinstance(other, Tag):
|
77 |
+
return NotImplemented
|
78 |
+
|
79 |
+
return (
|
80 |
+
(self._hash == other._hash) # Short-circuit ASAP for perf reasons.
|
81 |
+
and (self._platform == other._platform)
|
82 |
+
and (self._abi == other._abi)
|
83 |
+
and (self._interpreter == other._interpreter)
|
84 |
+
)
|
85 |
+
|
86 |
+
def __hash__(self) -> int:
|
87 |
+
return self._hash
|
88 |
+
|
89 |
+
def __str__(self) -> str:
|
90 |
+
return f"{self._interpreter}-{self._abi}-{self._platform}"
|
91 |
+
|
92 |
+
def __repr__(self) -> str:
|
93 |
+
return "<{self} @ {self_id}>".format(self=self, self_id=id(self))
|
94 |
+
|
95 |
+
|
96 |
+
def parse_tag(tag: str) -> FrozenSet[Tag]:
|
97 |
+
"""
|
98 |
+
Parses the provided tag (e.g. `py3-none-any`) into a frozenset of Tag instances.
|
99 |
+
|
100 |
+
Returning a set is required due to the possibility that the tag is a
|
101 |
+
compressed tag set.
|
102 |
+
"""
|
103 |
+
tags = set()
|
104 |
+
interpreters, abis, platforms = tag.split("-")
|
105 |
+
for interpreter in interpreters.split("."):
|
106 |
+
for abi in abis.split("."):
|
107 |
+
for platform_ in platforms.split("."):
|
108 |
+
tags.add(Tag(interpreter, abi, platform_))
|
109 |
+
return frozenset(tags)
|
110 |
+
|
111 |
+
|
112 |
+
def _get_config_var(name: str, warn: bool = False) -> Union[int, str, None]:
|
113 |
+
value = sysconfig.get_config_var(name)
|
114 |
+
if value is None and warn:
|
115 |
+
logger.debug(
|
116 |
+
"Config variable '%s' is unset, Python ABI tag may be incorrect", name
|
117 |
+
)
|
118 |
+
return value
|
119 |
+
|
120 |
+
|
121 |
+
def _normalize_string(string: str) -> str:
|
122 |
+
return string.replace(".", "_").replace("-", "_")
|
123 |
+
|
124 |
+
|
125 |
+
def _abi3_applies(python_version: PythonVersion) -> bool:
|
126 |
+
"""
|
127 |
+
Determine if the Python version supports abi3.
|
128 |
+
|
129 |
+
PEP 384 was first implemented in Python 3.2.
|
130 |
+
"""
|
131 |
+
return len(python_version) > 1 and tuple(python_version) >= (3, 2)
|
132 |
+
|
133 |
+
|
134 |
+
def _cpython_abis(py_version: PythonVersion, warn: bool = False) -> List[str]:
|
135 |
+
py_version = tuple(py_version) # To allow for version comparison.
|
136 |
+
abis = []
|
137 |
+
version = _version_nodot(py_version[:2])
|
138 |
+
debug = pymalloc = ucs4 = ""
|
139 |
+
with_debug = _get_config_var("Py_DEBUG", warn)
|
140 |
+
has_refcount = hasattr(sys, "gettotalrefcount")
|
141 |
+
# Windows doesn't set Py_DEBUG, so checking for support of debug-compiled
|
142 |
+
# extension modules is the best option.
|
143 |
+
# https://github.com/pypa/pip/issues/3383#issuecomment-173267692
|
144 |
+
has_ext = "_d.pyd" in EXTENSION_SUFFIXES
|
145 |
+
if with_debug or (with_debug is None and (has_refcount or has_ext)):
|
146 |
+
debug = "d"
|
147 |
+
if py_version < (3, 8):
|
148 |
+
with_pymalloc = _get_config_var("WITH_PYMALLOC", warn)
|
149 |
+
if with_pymalloc or with_pymalloc is None:
|
150 |
+
pymalloc = "m"
|
151 |
+
if py_version < (3, 3):
|
152 |
+
unicode_size = _get_config_var("Py_UNICODE_SIZE", warn)
|
153 |
+
if unicode_size == 4 or (
|
154 |
+
unicode_size is None and sys.maxunicode == 0x10FFFF
|
155 |
+
):
|
156 |
+
ucs4 = "u"
|
157 |
+
elif debug:
|
158 |
+
# Debug builds can also load "normal" extension modules.
|
159 |
+
# We can also assume no UCS-4 or pymalloc requirement.
|
160 |
+
abis.append(f"cp{version}")
|
161 |
+
abis.insert(
|
162 |
+
0,
|
163 |
+
"cp{version}{debug}{pymalloc}{ucs4}".format(
|
164 |
+
version=version, debug=debug, pymalloc=pymalloc, ucs4=ucs4
|
165 |
+
),
|
166 |
+
)
|
167 |
+
return abis
|
168 |
+
|
169 |
+
|
170 |
+
def cpython_tags(
|
171 |
+
python_version: Optional[PythonVersion] = None,
|
172 |
+
abis: Optional[Iterable[str]] = None,
|
173 |
+
platforms: Optional[Iterable[str]] = None,
|
174 |
+
*,
|
175 |
+
warn: bool = False,
|
176 |
+
) -> Iterator[Tag]:
|
177 |
+
"""
|
178 |
+
Yields the tags for a CPython interpreter.
|
179 |
+
|
180 |
+
The tags consist of:
|
181 |
+
- cp<python_version>-<abi>-<platform>
|
182 |
+
- cp<python_version>-abi3-<platform>
|
183 |
+
- cp<python_version>-none-<platform>
|
184 |
+
- cp<less than python_version>-abi3-<platform> # Older Python versions down to 3.2.
|
185 |
+
|
186 |
+
If python_version only specifies a major version then user-provided ABIs and
|
187 |
+
the 'none' ABItag will be used.
|
188 |
+
|
189 |
+
If 'abi3' or 'none' are specified in 'abis' then they will be yielded at
|
190 |
+
their normal position and not at the beginning.
|
191 |
+
"""
|
192 |
+
if not python_version:
|
193 |
+
python_version = sys.version_info[:2]
|
194 |
+
|
195 |
+
interpreter = "cp{}".format(_version_nodot(python_version[:2]))
|
196 |
+
|
197 |
+
if abis is None:
|
198 |
+
if len(python_version) > 1:
|
199 |
+
abis = _cpython_abis(python_version, warn)
|
200 |
+
else:
|
201 |
+
abis = []
|
202 |
+
abis = list(abis)
|
203 |
+
# 'abi3' and 'none' are explicitly handled later.
|
204 |
+
for explicit_abi in ("abi3", "none"):
|
205 |
+
try:
|
206 |
+
abis.remove(explicit_abi)
|
207 |
+
except ValueError:
|
208 |
+
pass
|
209 |
+
|
210 |
+
platforms = list(platforms or _platform_tags())
|
211 |
+
for abi in abis:
|
212 |
+
for platform_ in platforms:
|
213 |
+
yield Tag(interpreter, abi, platform_)
|
214 |
+
if _abi3_applies(python_version):
|
215 |
+
yield from (Tag(interpreter, "abi3", platform_) for platform_ in platforms)
|
216 |
+
yield from (Tag(interpreter, "none", platform_) for platform_ in platforms)
|
217 |
+
|
218 |
+
if _abi3_applies(python_version):
|
219 |
+
for minor_version in range(python_version[1] - 1, 1, -1):
|
220 |
+
for platform_ in platforms:
|
221 |
+
interpreter = "cp{version}".format(
|
222 |
+
version=_version_nodot((python_version[0], minor_version))
|
223 |
+
)
|
224 |
+
yield Tag(interpreter, "abi3", platform_)
|
225 |
+
|
226 |
+
|
227 |
+
def _generic_abi() -> Iterator[str]:
|
228 |
+
abi = sysconfig.get_config_var("SOABI")
|
229 |
+
if abi:
|
230 |
+
yield _normalize_string(abi)
|
231 |
+
|
232 |
+
|
233 |
+
def generic_tags(
|
234 |
+
interpreter: Optional[str] = None,
|
235 |
+
abis: Optional[Iterable[str]] = None,
|
236 |
+
platforms: Optional[Iterable[str]] = None,
|
237 |
+
*,
|
238 |
+
warn: bool = False,
|
239 |
+
) -> Iterator[Tag]:
|
240 |
+
"""
|
241 |
+
Yields the tags for a generic interpreter.
|
242 |
+
|
243 |
+
The tags consist of:
|
244 |
+
- <interpreter>-<abi>-<platform>
|
245 |
+
|
246 |
+
The "none" ABI will be added if it was not explicitly provided.
|
247 |
+
"""
|
248 |
+
if not interpreter:
|
249 |
+
interp_name = interpreter_name()
|
250 |
+
interp_version = interpreter_version(warn=warn)
|
251 |
+
interpreter = "".join([interp_name, interp_version])
|
252 |
+
if abis is None:
|
253 |
+
abis = _generic_abi()
|
254 |
+
platforms = list(platforms or _platform_tags())
|
255 |
+
abis = list(abis)
|
256 |
+
if "none" not in abis:
|
257 |
+
abis.append("none")
|
258 |
+
for abi in abis:
|
259 |
+
for platform_ in platforms:
|
260 |
+
yield Tag(interpreter, abi, platform_)
|
261 |
+
|
262 |
+
|
263 |
+
def _py_interpreter_range(py_version: PythonVersion) -> Iterator[str]:
|
264 |
+
"""
|
265 |
+
Yields Python versions in descending order.
|
266 |
+
|
267 |
+
After the latest version, the major-only version will be yielded, and then
|
268 |
+
all previous versions of that major version.
|
269 |
+
"""
|
270 |
+
if len(py_version) > 1:
|
271 |
+
yield "py{version}".format(version=_version_nodot(py_version[:2]))
|
272 |
+
yield "py{major}".format(major=py_version[0])
|
273 |
+
if len(py_version) > 1:
|
274 |
+
for minor in range(py_version[1] - 1, -1, -1):
|
275 |
+
yield "py{version}".format(version=_version_nodot((py_version[0], minor)))
|
276 |
+
|
277 |
+
|
278 |
+
def compatible_tags(
|
279 |
+
python_version: Optional[PythonVersion] = None,
|
280 |
+
interpreter: Optional[str] = None,
|
281 |
+
platforms: Optional[Iterable[str]] = None,
|
282 |
+
) -> Iterator[Tag]:
|
283 |
+
"""
|
284 |
+
Yields the sequence of tags that are compatible with a specific version of Python.
|
285 |
+
|
286 |
+
The tags consist of:
|
287 |
+
- py*-none-<platform>
|
288 |
+
- <interpreter>-none-any # ... if `interpreter` is provided.
|
289 |
+
- py*-none-any
|
290 |
+
"""
|
291 |
+
if not python_version:
|
292 |
+
python_version = sys.version_info[:2]
|
293 |
+
platforms = list(platforms or _platform_tags())
|
294 |
+
for version in _py_interpreter_range(python_version):
|
295 |
+
for platform_ in platforms:
|
296 |
+
yield Tag(version, "none", platform_)
|
297 |
+
if interpreter:
|
298 |
+
yield Tag(interpreter, "none", "any")
|
299 |
+
for version in _py_interpreter_range(python_version):
|
300 |
+
yield Tag(version, "none", "any")
|
301 |
+
|
302 |
+
|
303 |
+
def _mac_arch(arch: str, is_32bit: bool = _32_BIT_INTERPRETER) -> str:
|
304 |
+
if not is_32bit:
|
305 |
+
return arch
|
306 |
+
|
307 |
+
if arch.startswith("ppc"):
|
308 |
+
return "ppc"
|
309 |
+
|
310 |
+
return "i386"
|
311 |
+
|
312 |
+
|
313 |
+
def _mac_binary_formats(version: MacVersion, cpu_arch: str) -> List[str]:
|
314 |
+
formats = [cpu_arch]
|
315 |
+
if cpu_arch == "x86_64":
|
316 |
+
if version < (10, 4):
|
317 |
+
return []
|
318 |
+
formats.extend(["intel", "fat64", "fat32"])
|
319 |
+
|
320 |
+
elif cpu_arch == "i386":
|
321 |
+
if version < (10, 4):
|
322 |
+
return []
|
323 |
+
formats.extend(["intel", "fat32", "fat"])
|
324 |
+
|
325 |
+
elif cpu_arch == "ppc64":
|
326 |
+
# TODO: Need to care about 32-bit PPC for ppc64 through 10.2?
|
327 |
+
if version > (10, 5) or version < (10, 4):
|
328 |
+
return []
|
329 |
+
formats.append("fat64")
|
330 |
+
|
331 |
+
elif cpu_arch == "ppc":
|
332 |
+
if version > (10, 6):
|
333 |
+
return []
|
334 |
+
formats.extend(["fat32", "fat"])
|
335 |
+
|
336 |
+
if cpu_arch in {"arm64", "x86_64"}:
|
337 |
+
formats.append("universal2")
|
338 |
+
|
339 |
+
if cpu_arch in {"x86_64", "i386", "ppc64", "ppc", "intel"}:
|
340 |
+
formats.append("universal")
|
341 |
+
|
342 |
+
return formats
|
343 |
+
|
344 |
+
|
345 |
+
def mac_platforms(
|
346 |
+
version: Optional[MacVersion] = None, arch: Optional[str] = None
|
347 |
+
) -> Iterator[str]:
|
348 |
+
"""
|
349 |
+
Yields the platform tags for a macOS system.
|
350 |
+
|
351 |
+
The `version` parameter is a two-item tuple specifying the macOS version to
|
352 |
+
generate platform tags for. The `arch` parameter is the CPU architecture to
|
353 |
+
generate platform tags for. Both parameters default to the appropriate value
|
354 |
+
for the current system.
|
355 |
+
"""
|
356 |
+
version_str, _, cpu_arch = platform.mac_ver()
|
357 |
+
if version is None:
|
358 |
+
version = cast("MacVersion", tuple(map(int, version_str.split(".")[:2])))
|
359 |
+
else:
|
360 |
+
version = version
|
361 |
+
if arch is None:
|
362 |
+
arch = _mac_arch(cpu_arch)
|
363 |
+
else:
|
364 |
+
arch = arch
|
365 |
+
|
366 |
+
if (10, 0) <= version and version < (11, 0):
|
367 |
+
# Prior to Mac OS 11, each yearly release of Mac OS bumped the
|
368 |
+
# "minor" version number. The major version was always 10.
|
369 |
+
for minor_version in range(version[1], -1, -1):
|
370 |
+
compat_version = 10, minor_version
|
371 |
+
binary_formats = _mac_binary_formats(compat_version, arch)
|
372 |
+
for binary_format in binary_formats:
|
373 |
+
yield "macosx_{major}_{minor}_{binary_format}".format(
|
374 |
+
major=10, minor=minor_version, binary_format=binary_format
|
375 |
+
)
|
376 |
+
|
377 |
+
if version >= (11, 0):
|
378 |
+
# Starting with Mac OS 11, each yearly release bumps the major version
|
379 |
+
# number. The minor versions are now the midyear updates.
|
380 |
+
for major_version in range(version[0], 10, -1):
|
381 |
+
compat_version = major_version, 0
|
382 |
+
binary_formats = _mac_binary_formats(compat_version, arch)
|
383 |
+
for binary_format in binary_formats:
|
384 |
+
yield "macosx_{major}_{minor}_{binary_format}".format(
|
385 |
+
major=major_version, minor=0, binary_format=binary_format
|
386 |
+
)
|
387 |
+
|
388 |
+
if version >= (11, 0):
|
389 |
+
# Mac OS 11 on x86_64 is compatible with binaries from previous releases.
|
390 |
+
# Arm64 support was introduced in 11.0, so no Arm binaries from previous
|
391 |
+
# releases exist.
|
392 |
+
#
|
393 |
+
# However, the "universal2" binary format can have a
|
394 |
+
# macOS version earlier than 11.0 when the x86_64 part of the binary supports
|
395 |
+
# that version of macOS.
|
396 |
+
if arch == "x86_64":
|
397 |
+
for minor_version in range(16, 3, -1):
|
398 |
+
compat_version = 10, minor_version
|
399 |
+
binary_formats = _mac_binary_formats(compat_version, arch)
|
400 |
+
for binary_format in binary_formats:
|
401 |
+
yield "macosx_{major}_{minor}_{binary_format}".format(
|
402 |
+
major=compat_version[0],
|
403 |
+
minor=compat_version[1],
|
404 |
+
binary_format=binary_format,
|
405 |
+
)
|
406 |
+
else:
|
407 |
+
for minor_version in range(16, 3, -1):
|
408 |
+
compat_version = 10, minor_version
|
409 |
+
binary_format = "universal2"
|
410 |
+
yield "macosx_{major}_{minor}_{binary_format}".format(
|
411 |
+
major=compat_version[0],
|
412 |
+
minor=compat_version[1],
|
413 |
+
binary_format=binary_format,
|
414 |
+
)
|
415 |
+
|
416 |
+
|
417 |
+
def _linux_platforms(is_32bit: bool = _32_BIT_INTERPRETER) -> Iterator[str]:
|
418 |
+
linux = _normalize_string(sysconfig.get_platform())
|
419 |
+
if is_32bit:
|
420 |
+
if linux == "linux_x86_64":
|
421 |
+
linux = "linux_i686"
|
422 |
+
elif linux == "linux_aarch64":
|
423 |
+
linux = "linux_armv7l"
|
424 |
+
_, arch = linux.split("_", 1)
|
425 |
+
yield from _manylinux.platform_tags(linux, arch)
|
426 |
+
yield from _musllinux.platform_tags(arch)
|
427 |
+
yield linux
|
428 |
+
|
429 |
+
|
430 |
+
def _generic_platforms() -> Iterator[str]:
|
431 |
+
yield _normalize_string(sysconfig.get_platform())
|
432 |
+
|
433 |
+
|
434 |
+
def _platform_tags() -> Iterator[str]:
|
435 |
+
"""
|
436 |
+
Provides the platform tags for this installation.
|
437 |
+
"""
|
438 |
+
if platform.system() == "Darwin":
|
439 |
+
return mac_platforms()
|
440 |
+
elif platform.system() == "Linux":
|
441 |
+
return _linux_platforms()
|
442 |
+
else:
|
443 |
+
return _generic_platforms()
|
444 |
+
|
445 |
+
|
446 |
+
def interpreter_name() -> str:
|
447 |
+
"""
|
448 |
+
Returns the name of the running interpreter.
|
449 |
+
"""
|
450 |
+
name = sys.implementation.name
|
451 |
+
return INTERPRETER_SHORT_NAMES.get(name) or name
|
452 |
+
|
453 |
+
|
454 |
+
def interpreter_version(*, warn: bool = False) -> str:
|
455 |
+
"""
|
456 |
+
Returns the version of the running interpreter.
|
457 |
+
"""
|
458 |
+
version = _get_config_var("py_version_nodot", warn=warn)
|
459 |
+
if version:
|
460 |
+
version = str(version)
|
461 |
+
else:
|
462 |
+
version = _version_nodot(sys.version_info[:2])
|
463 |
+
return version
|
464 |
+
|
465 |
+
|
466 |
+
def _version_nodot(version: PythonVersion) -> str:
|
467 |
+
return "".join(map(str, version))
|
468 |
+
|
469 |
+
|
470 |
+
def sys_tags(*, warn: bool = False) -> Iterator[Tag]:
|
471 |
+
"""
|
472 |
+
Returns the sequence of tag triples for the running interpreter.
|
473 |
+
|
474 |
+
The order of the sequence corresponds to priority order for the
|
475 |
+
interpreter, from most to least important.
|
476 |
+
"""
|
477 |
+
|
478 |
+
interp_name = interpreter_name()
|
479 |
+
if interp_name == "cp":
|
480 |
+
yield from cpython_tags(warn=warn)
|
481 |
+
else:
|
482 |
+
yield from generic_tags()
|
483 |
+
|
484 |
+
yield from compatible_tags()
|
public/gpt-2/packaging/utils.py
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This file is dual licensed under the terms of the Apache License, Version
|
2 |
+
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
|
3 |
+
# for complete details.
|
4 |
+
|
5 |
+
import re
|
6 |
+
from typing import FrozenSet, NewType, Tuple, Union, cast
|
7 |
+
|
8 |
+
from .tags import Tag, parse_tag
|
9 |
+
from .version import InvalidVersion, Version
|
10 |
+
|
11 |
+
BuildTag = Union[Tuple[()], Tuple[int, str]]
|
12 |
+
NormalizedName = NewType("NormalizedName", str)
|
13 |
+
|
14 |
+
|
15 |
+
class InvalidWheelFilename(ValueError):
|
16 |
+
"""
|
17 |
+
An invalid wheel filename was found, users should refer to PEP 427.
|
18 |
+
"""
|
19 |
+
|
20 |
+
|
21 |
+
class InvalidSdistFilename(ValueError):
|
22 |
+
"""
|
23 |
+
An invalid sdist filename was found, users should refer to the packaging user guide.
|
24 |
+
"""
|
25 |
+
|
26 |
+
|
27 |
+
_canonicalize_regex = re.compile(r"[-_.]+")
|
28 |
+
# PEP 427: The build number must start with a digit.
|
29 |
+
_build_tag_regex = re.compile(r"(\d+)(.*)")
|
30 |
+
|
31 |
+
|
32 |
+
def canonicalize_name(name: str) -> NormalizedName:
|
33 |
+
# This is taken from PEP 503.
|
34 |
+
value = _canonicalize_regex.sub("-", name).lower()
|
35 |
+
return cast(NormalizedName, value)
|
36 |
+
|
37 |
+
|
38 |
+
def canonicalize_version(version: Union[Version, str]) -> str:
|
39 |
+
"""
|
40 |
+
This is very similar to Version.__str__, but has one subtle difference
|
41 |
+
with the way it handles the release segment.
|
42 |
+
"""
|
43 |
+
if isinstance(version, str):
|
44 |
+
try:
|
45 |
+
parsed = Version(version)
|
46 |
+
except InvalidVersion:
|
47 |
+
# Legacy versions cannot be normalized
|
48 |
+
return version
|
49 |
+
else:
|
50 |
+
parsed = version
|
51 |
+
|
52 |
+
parts = []
|
53 |
+
|
54 |
+
# Epoch
|
55 |
+
if parsed.epoch != 0:
|
56 |
+
parts.append(f"{parsed.epoch}!")
|
57 |
+
|
58 |
+
# Release segment
|
59 |
+
# NB: This strips trailing '.0's to normalize
|
60 |
+
parts.append(re.sub(r"(\.0)+$", "", ".".join(str(x) for x in parsed.release)))
|
61 |
+
|
62 |
+
# Pre-release
|
63 |
+
if parsed.pre is not None:
|
64 |
+
parts.append("".join(str(x) for x in parsed.pre))
|
65 |
+
|
66 |
+
# Post-release
|
67 |
+
if parsed.post is not None:
|
68 |
+
parts.append(f".post{parsed.post}")
|
69 |
+
|
70 |
+
# Development release
|
71 |
+
if parsed.dev is not None:
|
72 |
+
parts.append(f".dev{parsed.dev}")
|
73 |
+
|
74 |
+
# Local version segment
|
75 |
+
if parsed.local is not None:
|
76 |
+
parts.append(f"+{parsed.local}")
|
77 |
+
|
78 |
+
return "".join(parts)
|
79 |
+
|
80 |
+
|
81 |
+
def parse_wheel_filename(
|
82 |
+
filename: str,
|
83 |
+
) -> Tuple[NormalizedName, Version, BuildTag, FrozenSet[Tag]]:
|
84 |
+
if not filename.endswith(".whl"):
|
85 |
+
raise InvalidWheelFilename(
|
86 |
+
f"Invalid wheel filename (extension must be '.whl'): {filename}"
|
87 |
+
)
|
88 |
+
|
89 |
+
filename = filename[:-4]
|
90 |
+
dashes = filename.count("-")
|
91 |
+
if dashes not in (4, 5):
|
92 |
+
raise InvalidWheelFilename(
|
93 |
+
f"Invalid wheel filename (wrong number of parts): {filename}"
|
94 |
+
)
|
95 |
+
|
96 |
+
parts = filename.split("-", dashes - 2)
|
97 |
+
name_part = parts[0]
|
98 |
+
# See PEP 427 for the rules on escaping the project name
|
99 |
+
if "__" in name_part or re.match(r"^[\w\d._]*$", name_part, re.UNICODE) is None:
|
100 |
+
raise InvalidWheelFilename(f"Invalid project name: {filename}")
|
101 |
+
name = canonicalize_name(name_part)
|
102 |
+
version = Version(parts[1])
|
103 |
+
if dashes == 5:
|
104 |
+
build_part = parts[2]
|
105 |
+
build_match = _build_tag_regex.match(build_part)
|
106 |
+
if build_match is None:
|
107 |
+
raise InvalidWheelFilename(
|
108 |
+
f"Invalid build number: {build_part} in '{filename}'"
|
109 |
+
)
|
110 |
+
build = cast(BuildTag, (int(build_match.group(1)), build_match.group(2)))
|
111 |
+
else:
|
112 |
+
build = ()
|
113 |
+
tags = parse_tag(parts[-1])
|
114 |
+
return (name, version, build, tags)
|
115 |
+
|
116 |
+
|
117 |
+
def parse_sdist_filename(filename: str) -> Tuple[NormalizedName, Version]:
|
118 |
+
if filename.endswith(".tar.gz"):
|
119 |
+
file_stem = filename[: -len(".tar.gz")]
|
120 |
+
elif filename.endswith(".zip"):
|
121 |
+
file_stem = filename[: -len(".zip")]
|
122 |
+
else:
|
123 |
+
raise InvalidSdistFilename(
|
124 |
+
f"Invalid sdist filename (extension must be '.tar.gz' or '.zip'):"
|
125 |
+
f" {filename}"
|
126 |
+
)
|
127 |
+
|
128 |
+
# We are requiring a PEP 440 version, which cannot contain dashes,
|
129 |
+
# so we split on the last dash.
|
130 |
+
name_part, sep, version_part = file_stem.rpartition("-")
|
131 |
+
if not sep:
|
132 |
+
raise InvalidSdistFilename(f"Invalid sdist filename: {filename}")
|
133 |
+
|
134 |
+
name = canonicalize_name(name_part)
|
135 |
+
version = Version(version_part)
|
136 |
+
return (name, version)
|
public/gpt-2/packaging/version.py
ADDED
@@ -0,0 +1,504 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This file is dual licensed under the terms of the Apache License, Version
|
2 |
+
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
|
3 |
+
# for complete details.
|
4 |
+
|
5 |
+
import collections
|
6 |
+
import itertools
|
7 |
+
import re
|
8 |
+
import warnings
|
9 |
+
from typing import Callable, Iterator, List, Optional, SupportsInt, Tuple, Union
|
10 |
+
|
11 |
+
from ._structures import Infinity, InfinityType, NegativeInfinity, NegativeInfinityType
|
12 |
+
|
13 |
+
__all__ = ["parse", "Version", "LegacyVersion", "InvalidVersion", "VERSION_PATTERN"]
|
14 |
+
|
15 |
+
InfiniteTypes = Union[InfinityType, NegativeInfinityType]
|
16 |
+
PrePostDevType = Union[InfiniteTypes, Tuple[str, int]]
|
17 |
+
SubLocalType = Union[InfiniteTypes, int, str]
|
18 |
+
LocalType = Union[
|
19 |
+
NegativeInfinityType,
|
20 |
+
Tuple[
|
21 |
+
Union[
|
22 |
+
SubLocalType,
|
23 |
+
Tuple[SubLocalType, str],
|
24 |
+
Tuple[NegativeInfinityType, SubLocalType],
|
25 |
+
],
|
26 |
+
...,
|
27 |
+
],
|
28 |
+
]
|
29 |
+
CmpKey = Tuple[
|
30 |
+
int, Tuple[int, ...], PrePostDevType, PrePostDevType, PrePostDevType, LocalType
|
31 |
+
]
|
32 |
+
LegacyCmpKey = Tuple[int, Tuple[str, ...]]
|
33 |
+
VersionComparisonMethod = Callable[
|
34 |
+
[Union[CmpKey, LegacyCmpKey], Union[CmpKey, LegacyCmpKey]], bool
|
35 |
+
]
|
36 |
+
|
37 |
+
_Version = collections.namedtuple(
|
38 |
+
"_Version", ["epoch", "release", "dev", "pre", "post", "local"]
|
39 |
+
)
|
40 |
+
|
41 |
+
|
42 |
+
def parse(version: str) -> Union["LegacyVersion", "Version"]:
|
43 |
+
"""
|
44 |
+
Parse the given version string and return either a :class:`Version` object
|
45 |
+
or a :class:`LegacyVersion` object depending on if the given version is
|
46 |
+
a valid PEP 440 version or a legacy version.
|
47 |
+
"""
|
48 |
+
try:
|
49 |
+
return Version(version)
|
50 |
+
except InvalidVersion:
|
51 |
+
return LegacyVersion(version)
|
52 |
+
|
53 |
+
|
54 |
+
class InvalidVersion(ValueError):
|
55 |
+
"""
|
56 |
+
An invalid version was found, users should refer to PEP 440.
|
57 |
+
"""
|
58 |
+
|
59 |
+
|
60 |
+
class _BaseVersion:
|
61 |
+
_key: Union[CmpKey, LegacyCmpKey]
|
62 |
+
|
63 |
+
def __hash__(self) -> int:
|
64 |
+
return hash(self._key)
|
65 |
+
|
66 |
+
# Please keep the duplicated `isinstance` check
|
67 |
+
# in the six comparisons hereunder
|
68 |
+
# unless you find a way to avoid adding overhead function calls.
|
69 |
+
def __lt__(self, other: "_BaseVersion") -> bool:
|
70 |
+
if not isinstance(other, _BaseVersion):
|
71 |
+
return NotImplemented
|
72 |
+
|
73 |
+
return self._key < other._key
|
74 |
+
|
75 |
+
def __le__(self, other: "_BaseVersion") -> bool:
|
76 |
+
if not isinstance(other, _BaseVersion):
|
77 |
+
return NotImplemented
|
78 |
+
|
79 |
+
return self._key <= other._key
|
80 |
+
|
81 |
+
def __eq__(self, other: object) -> bool:
|
82 |
+
if not isinstance(other, _BaseVersion):
|
83 |
+
return NotImplemented
|
84 |
+
|
85 |
+
return self._key == other._key
|
86 |
+
|
87 |
+
def __ge__(self, other: "_BaseVersion") -> bool:
|
88 |
+
if not isinstance(other, _BaseVersion):
|
89 |
+
return NotImplemented
|
90 |
+
|
91 |
+
return self._key >= other._key
|
92 |
+
|
93 |
+
def __gt__(self, other: "_BaseVersion") -> bool:
|
94 |
+
if not isinstance(other, _BaseVersion):
|
95 |
+
return NotImplemented
|
96 |
+
|
97 |
+
return self._key > other._key
|
98 |
+
|
99 |
+
def __ne__(self, other: object) -> bool:
|
100 |
+
if not isinstance(other, _BaseVersion):
|
101 |
+
return NotImplemented
|
102 |
+
|
103 |
+
return self._key != other._key
|
104 |
+
|
105 |
+
|
106 |
+
class LegacyVersion(_BaseVersion):
|
107 |
+
def __init__(self, version: str) -> None:
|
108 |
+
self._version = str(version)
|
109 |
+
self._key = _legacy_cmpkey(self._version)
|
110 |
+
|
111 |
+
warnings.warn(
|
112 |
+
"Creating a LegacyVersion has been deprecated and will be "
|
113 |
+
"removed in the next major release",
|
114 |
+
DeprecationWarning,
|
115 |
+
)
|
116 |
+
|
117 |
+
def __str__(self) -> str:
|
118 |
+
return self._version
|
119 |
+
|
120 |
+
def __repr__(self) -> str:
|
121 |
+
return f"<LegacyVersion('{self}')>"
|
122 |
+
|
123 |
+
@property
|
124 |
+
def public(self) -> str:
|
125 |
+
return self._version
|
126 |
+
|
127 |
+
@property
|
128 |
+
def base_version(self) -> str:
|
129 |
+
return self._version
|
130 |
+
|
131 |
+
@property
|
132 |
+
def epoch(self) -> int:
|
133 |
+
return -1
|
134 |
+
|
135 |
+
@property
|
136 |
+
def release(self) -> None:
|
137 |
+
return None
|
138 |
+
|
139 |
+
@property
|
140 |
+
def pre(self) -> None:
|
141 |
+
return None
|
142 |
+
|
143 |
+
@property
|
144 |
+
def post(self) -> None:
|
145 |
+
return None
|
146 |
+
|
147 |
+
@property
|
148 |
+
def dev(self) -> None:
|
149 |
+
return None
|
150 |
+
|
151 |
+
@property
|
152 |
+
def local(self) -> None:
|
153 |
+
return None
|
154 |
+
|
155 |
+
@property
|
156 |
+
def is_prerelease(self) -> bool:
|
157 |
+
return False
|
158 |
+
|
159 |
+
@property
|
160 |
+
def is_postrelease(self) -> bool:
|
161 |
+
return False
|
162 |
+
|
163 |
+
@property
|
164 |
+
def is_devrelease(self) -> bool:
|
165 |
+
return False
|
166 |
+
|
167 |
+
|
168 |
+
_legacy_version_component_re = re.compile(r"(\d+ | [a-z]+ | \.| -)", re.VERBOSE)
|
169 |
+
|
170 |
+
_legacy_version_replacement_map = {
|
171 |
+
"pre": "c",
|
172 |
+
"preview": "c",
|
173 |
+
"-": "final-",
|
174 |
+
"rc": "c",
|
175 |
+
"dev": "@",
|
176 |
+
}
|
177 |
+
|
178 |
+
|
179 |
+
def _parse_version_parts(s: str) -> Iterator[str]:
|
180 |
+
for part in _legacy_version_component_re.split(s):
|
181 |
+
part = _legacy_version_replacement_map.get(part, part)
|
182 |
+
|
183 |
+
if not part or part == ".":
|
184 |
+
continue
|
185 |
+
|
186 |
+
if part[:1] in "0123456789":
|
187 |
+
# pad for numeric comparison
|
188 |
+
yield part.zfill(8)
|
189 |
+
else:
|
190 |
+
yield "*" + part
|
191 |
+
|
192 |
+
# ensure that alpha/beta/candidate are before final
|
193 |
+
yield "*final"
|
194 |
+
|
195 |
+
|
196 |
+
def _legacy_cmpkey(version: str) -> LegacyCmpKey:
|
197 |
+
|
198 |
+
# We hardcode an epoch of -1 here. A PEP 440 version can only have a epoch
|
199 |
+
# greater than or equal to 0. This will effectively put the LegacyVersion,
|
200 |
+
# which uses the defacto standard originally implemented by setuptools,
|
201 |
+
# as before all PEP 440 versions.
|
202 |
+
epoch = -1
|
203 |
+
|
204 |
+
# This scheme is taken from pkg_resources.parse_version setuptools prior to
|
205 |
+
# it's adoption of the packaging library.
|
206 |
+
parts: List[str] = []
|
207 |
+
for part in _parse_version_parts(version.lower()):
|
208 |
+
if part.startswith("*"):
|
209 |
+
# remove "-" before a prerelease tag
|
210 |
+
if part < "*final":
|
211 |
+
while parts and parts[-1] == "*final-":
|
212 |
+
parts.pop()
|
213 |
+
|
214 |
+
# remove trailing zeros from each series of numeric parts
|
215 |
+
while parts and parts[-1] == "00000000":
|
216 |
+
parts.pop()
|
217 |
+
|
218 |
+
parts.append(part)
|
219 |
+
|
220 |
+
return epoch, tuple(parts)
|
221 |
+
|
222 |
+
|
223 |
+
# Deliberately not anchored to the start and end of the string, to make it
|
224 |
+
# easier for 3rd party code to reuse
|
225 |
+
VERSION_PATTERN = r"""
|
226 |
+
v?
|
227 |
+
(?:
|
228 |
+
(?:(?P<epoch>[0-9]+)!)? # epoch
|
229 |
+
(?P<release>[0-9]+(?:\.[0-9]+)*) # release segment
|
230 |
+
(?P<pre> # pre-release
|
231 |
+
[-_\.]?
|
232 |
+
(?P<pre_l>(a|b|c|rc|alpha|beta|pre|preview))
|
233 |
+
[-_\.]?
|
234 |
+
(?P<pre_n>[0-9]+)?
|
235 |
+
)?
|
236 |
+
(?P<post> # post release
|
237 |
+
(?:-(?P<post_n1>[0-9]+))
|
238 |
+
|
|
239 |
+
(?:
|
240 |
+
[-_\.]?
|
241 |
+
(?P<post_l>post|rev|r)
|
242 |
+
[-_\.]?
|
243 |
+
(?P<post_n2>[0-9]+)?
|
244 |
+
)
|
245 |
+
)?
|
246 |
+
(?P<dev> # dev release
|
247 |
+
[-_\.]?
|
248 |
+
(?P<dev_l>dev)
|
249 |
+
[-_\.]?
|
250 |
+
(?P<dev_n>[0-9]+)?
|
251 |
+
)?
|
252 |
+
)
|
253 |
+
(?:\+(?P<local>[a-z0-9]+(?:[-_\.][a-z0-9]+)*))? # local version
|
254 |
+
"""
|
255 |
+
|
256 |
+
|
257 |
+
class Version(_BaseVersion):
|
258 |
+
|
259 |
+
_regex = re.compile(r"^\s*" + VERSION_PATTERN + r"\s*$", re.VERBOSE | re.IGNORECASE)
|
260 |
+
|
261 |
+
def __init__(self, version: str) -> None:
|
262 |
+
|
263 |
+
# Validate the version and parse it into pieces
|
264 |
+
match = self._regex.search(version)
|
265 |
+
if not match:
|
266 |
+
raise InvalidVersion(f"Invalid version: '{version}'")
|
267 |
+
|
268 |
+
# Store the parsed out pieces of the version
|
269 |
+
self._version = _Version(
|
270 |
+
epoch=int(match.group("epoch")) if match.group("epoch") else 0,
|
271 |
+
release=tuple(int(i) for i in match.group("release").split(".")),
|
272 |
+
pre=_parse_letter_version(match.group("pre_l"), match.group("pre_n")),
|
273 |
+
post=_parse_letter_version(
|
274 |
+
match.group("post_l"), match.group("post_n1") or match.group("post_n2")
|
275 |
+
),
|
276 |
+
dev=_parse_letter_version(match.group("dev_l"), match.group("dev_n")),
|
277 |
+
local=_parse_local_version(match.group("local")),
|
278 |
+
)
|
279 |
+
|
280 |
+
# Generate a key which will be used for sorting
|
281 |
+
self._key = _cmpkey(
|
282 |
+
self._version.epoch,
|
283 |
+
self._version.release,
|
284 |
+
self._version.pre,
|
285 |
+
self._version.post,
|
286 |
+
self._version.dev,
|
287 |
+
self._version.local,
|
288 |
+
)
|
289 |
+
|
290 |
+
def __repr__(self) -> str:
|
291 |
+
return f"<Version('{self}')>"
|
292 |
+
|
293 |
+
def __str__(self) -> str:
|
294 |
+
parts = []
|
295 |
+
|
296 |
+
# Epoch
|
297 |
+
if self.epoch != 0:
|
298 |
+
parts.append(f"{self.epoch}!")
|
299 |
+
|
300 |
+
# Release segment
|
301 |
+
parts.append(".".join(str(x) for x in self.release))
|
302 |
+
|
303 |
+
# Pre-release
|
304 |
+
if self.pre is not None:
|
305 |
+
parts.append("".join(str(x) for x in self.pre))
|
306 |
+
|
307 |
+
# Post-release
|
308 |
+
if self.post is not None:
|
309 |
+
parts.append(f".post{self.post}")
|
310 |
+
|
311 |
+
# Development release
|
312 |
+
if self.dev is not None:
|
313 |
+
parts.append(f".dev{self.dev}")
|
314 |
+
|
315 |
+
# Local version segment
|
316 |
+
if self.local is not None:
|
317 |
+
parts.append(f"+{self.local}")
|
318 |
+
|
319 |
+
return "".join(parts)
|
320 |
+
|
321 |
+
@property
|
322 |
+
def epoch(self) -> int:
|
323 |
+
_epoch: int = self._version.epoch
|
324 |
+
return _epoch
|
325 |
+
|
326 |
+
@property
|
327 |
+
def release(self) -> Tuple[int, ...]:
|
328 |
+
_release: Tuple[int, ...] = self._version.release
|
329 |
+
return _release
|
330 |
+
|
331 |
+
@property
|
332 |
+
def pre(self) -> Optional[Tuple[str, int]]:
|
333 |
+
_pre: Optional[Tuple[str, int]] = self._version.pre
|
334 |
+
return _pre
|
335 |
+
|
336 |
+
@property
|
337 |
+
def post(self) -> Optional[int]:
|
338 |
+
return self._version.post[1] if self._version.post else None
|
339 |
+
|
340 |
+
@property
|
341 |
+
def dev(self) -> Optional[int]:
|
342 |
+
return self._version.dev[1] if self._version.dev else None
|
343 |
+
|
344 |
+
@property
|
345 |
+
def local(self) -> Optional[str]:
|
346 |
+
if self._version.local:
|
347 |
+
return ".".join(str(x) for x in self._version.local)
|
348 |
+
else:
|
349 |
+
return None
|
350 |
+
|
351 |
+
@property
|
352 |
+
def public(self) -> str:
|
353 |
+
return str(self).split("+", 1)[0]
|
354 |
+
|
355 |
+
@property
|
356 |
+
def base_version(self) -> str:
|
357 |
+
parts = []
|
358 |
+
|
359 |
+
# Epoch
|
360 |
+
if self.epoch != 0:
|
361 |
+
parts.append(f"{self.epoch}!")
|
362 |
+
|
363 |
+
# Release segment
|
364 |
+
parts.append(".".join(str(x) for x in self.release))
|
365 |
+
|
366 |
+
return "".join(parts)
|
367 |
+
|
368 |
+
@property
|
369 |
+
def is_prerelease(self) -> bool:
|
370 |
+
return self.dev is not None or self.pre is not None
|
371 |
+
|
372 |
+
@property
|
373 |
+
def is_postrelease(self) -> bool:
|
374 |
+
return self.post is not None
|
375 |
+
|
376 |
+
@property
|
377 |
+
def is_devrelease(self) -> bool:
|
378 |
+
return self.dev is not None
|
379 |
+
|
380 |
+
@property
|
381 |
+
def major(self) -> int:
|
382 |
+
return self.release[0] if len(self.release) >= 1 else 0
|
383 |
+
|
384 |
+
@property
|
385 |
+
def minor(self) -> int:
|
386 |
+
return self.release[1] if len(self.release) >= 2 else 0
|
387 |
+
|
388 |
+
@property
|
389 |
+
def micro(self) -> int:
|
390 |
+
return self.release[2] if len(self.release) >= 3 else 0
|
391 |
+
|
392 |
+
|
393 |
+
def _parse_letter_version(
|
394 |
+
letter: str, number: Union[str, bytes, SupportsInt]
|
395 |
+
) -> Optional[Tuple[str, int]]:
|
396 |
+
|
397 |
+
if letter:
|
398 |
+
# We consider there to be an implicit 0 in a pre-release if there is
|
399 |
+
# not a numeral associated with it.
|
400 |
+
if number is None:
|
401 |
+
number = 0
|
402 |
+
|
403 |
+
# We normalize any letters to their lower case form
|
404 |
+
letter = letter.lower()
|
405 |
+
|
406 |
+
# We consider some words to be alternate spellings of other words and
|
407 |
+
# in those cases we want to normalize the spellings to our preferred
|
408 |
+
# spelling.
|
409 |
+
if letter == "alpha":
|
410 |
+
letter = "a"
|
411 |
+
elif letter == "beta":
|
412 |
+
letter = "b"
|
413 |
+
elif letter in ["c", "pre", "preview"]:
|
414 |
+
letter = "rc"
|
415 |
+
elif letter in ["rev", "r"]:
|
416 |
+
letter = "post"
|
417 |
+
|
418 |
+
return letter, int(number)
|
419 |
+
if not letter and number:
|
420 |
+
# We assume if we are given a number, but we are not given a letter
|
421 |
+
# then this is using the implicit post release syntax (e.g. 1.0-1)
|
422 |
+
letter = "post"
|
423 |
+
|
424 |
+
return letter, int(number)
|
425 |
+
|
426 |
+
return None
|
427 |
+
|
428 |
+
|
429 |
+
_local_version_separators = re.compile(r"[\._-]")
|
430 |
+
|
431 |
+
|
432 |
+
def _parse_local_version(local: str) -> Optional[LocalType]:
|
433 |
+
"""
|
434 |
+
Takes a string like abc.1.twelve and turns it into ("abc", 1, "twelve").
|
435 |
+
"""
|
436 |
+
if local is not None:
|
437 |
+
return tuple(
|
438 |
+
part.lower() if not part.isdigit() else int(part)
|
439 |
+
for part in _local_version_separators.split(local)
|
440 |
+
)
|
441 |
+
return None
|
442 |
+
|
443 |
+
|
444 |
+
def _cmpkey(
|
445 |
+
epoch: int,
|
446 |
+
release: Tuple[int, ...],
|
447 |
+
pre: Optional[Tuple[str, int]],
|
448 |
+
post: Optional[Tuple[str, int]],
|
449 |
+
dev: Optional[Tuple[str, int]],
|
450 |
+
local: Optional[Tuple[SubLocalType]],
|
451 |
+
) -> CmpKey:
|
452 |
+
|
453 |
+
# When we compare a release version, we want to compare it with all of the
|
454 |
+
# trailing zeros removed. So we'll use a reverse the list, drop all the now
|
455 |
+
# leading zeros until we come to something non zero, then take the rest
|
456 |
+
# re-reverse it back into the correct order and make it a tuple and use
|
457 |
+
# that for our sorting key.
|
458 |
+
_release = tuple(
|
459 |
+
reversed(list(itertools.dropwhile(lambda x: x == 0, reversed(release))))
|
460 |
+
)
|
461 |
+
|
462 |
+
# We need to "trick" the sorting algorithm to put 1.0.dev0 before 1.0a0.
|
463 |
+
# We'll do this by abusing the pre segment, but we _only_ want to do this
|
464 |
+
# if there is not a pre or a post segment. If we have one of those then
|
465 |
+
# the normal sorting rules will handle this case correctly.
|
466 |
+
if pre is None and post is None and dev is not None:
|
467 |
+
_pre: PrePostDevType = NegativeInfinity
|
468 |
+
# Versions without a pre-release (except as noted above) should sort after
|
469 |
+
# those with one.
|
470 |
+
elif pre is None:
|
471 |
+
_pre = Infinity
|
472 |
+
else:
|
473 |
+
_pre = pre
|
474 |
+
|
475 |
+
# Versions without a post segment should sort before those with one.
|
476 |
+
if post is None:
|
477 |
+
_post: PrePostDevType = NegativeInfinity
|
478 |
+
|
479 |
+
else:
|
480 |
+
_post = post
|
481 |
+
|
482 |
+
# Versions without a development segment should sort after those with one.
|
483 |
+
if dev is None:
|
484 |
+
_dev: PrePostDevType = Infinity
|
485 |
+
|
486 |
+
else:
|
487 |
+
_dev = dev
|
488 |
+
|
489 |
+
if local is None:
|
490 |
+
# Versions without a local segment should sort before those with one.
|
491 |
+
_local: LocalType = NegativeInfinity
|
492 |
+
else:
|
493 |
+
# Versions with a local segment need that segment parsed to implement
|
494 |
+
# the sorting rules in PEP440.
|
495 |
+
# - Alpha numeric segments sort before numeric segments
|
496 |
+
# - Alpha numeric segments sort lexicographically
|
497 |
+
# - Numeric segments sort numerically
|
498 |
+
# - Shorter versions sort before longer versions when the prefixes
|
499 |
+
# match exactly
|
500 |
+
_local = tuple(
|
501 |
+
(i, "") if isinstance(i, int) else (NegativeInfinity, i) for i in local
|
502 |
+
)
|
503 |
+
|
504 |
+
return epoch, _release, _pre, _post, _dev, _local
|
public/gpt-2/transformers-4.9.1.dist-info/LICENSE
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Copyright 2018- The Hugging Face team. All rights reserved.
|
2 |
+
|
3 |
+
Apache License
|
4 |
+
Version 2.0, January 2004
|
5 |
+
http://www.apache.org/licenses/
|
6 |
+
|
7 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
8 |
+
|
9 |
+
1. Definitions.
|
10 |
+
|
11 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
12 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
13 |
+
|
14 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
15 |
+
the copyright owner that is granting the License.
|
16 |
+
|
17 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
18 |
+
other entities that control, are controlled by, or are under common
|
19 |
+
control with that entity. For the purposes of this definition,
|
20 |
+
"control" means (i) the power, direct or indirect, to cause the
|
21 |
+
direction or management of such entity, whether by contract or
|
22 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
23 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
24 |
+
|
25 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
26 |
+
exercising permissions granted by this License.
|
27 |
+
|
28 |
+
"Source" form shall mean the preferred form for making modifications,
|
29 |
+
including but not limited to software source code, documentation
|
30 |
+
source, and configuration files.
|
31 |
+
|
32 |
+
"Object" form shall mean any form resulting from mechanical
|
33 |
+
transformation or translation of a Source form, including but
|
34 |
+
not limited to compiled object code, generated documentation,
|
35 |
+
and conversions to other media types.
|
36 |
+
|
37 |
+
"Work" shall mean the work of authorship, whether in Source or
|
38 |
+
Object form, made available under the License, as indicated by a
|
39 |
+
copyright notice that is included in or attached to the work
|
40 |
+
(an example is provided in the Appendix below).
|
41 |
+
|
42 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
43 |
+
form, that is based on (or derived from) the Work and for which the
|
44 |
+
editorial revisions, annotations, elaborations, or other modifications
|
45 |
+
represent, as a whole, an original work of authorship. For the purposes
|
46 |
+
of this License, Derivative Works shall not include works that remain
|
47 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
48 |
+
the Work and Derivative Works thereof.
|
49 |
+
|
50 |
+
"Contribution" shall mean any work of authorship, including
|
51 |
+
the original version of the Work and any modifications or additions
|
52 |
+
to that Work or Derivative Works thereof, that is intentionally
|
53 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
54 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
55 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
56 |
+
means any form of electronic, verbal, or written communication sent
|
57 |
+
to the Licensor or its representatives, including but not limited to
|
58 |
+
communication on electronic mailing lists, source code control systems,
|
59 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
60 |
+
Licensor for the purpose of discussing and improving the Work, but
|
61 |
+
excluding communication that is conspicuously marked or otherwise
|
62 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
63 |
+
|
64 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
65 |
+
on behalf of whom a Contribution has been received by Licensor and
|
66 |
+
subsequently incorporated within the Work.
|
67 |
+
|
68 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
69 |
+
this License, each Contributor hereby grants to You a perpetual,
|
70 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
71 |
+
copyright license to reproduce, prepare Derivative Works of,
|
72 |
+
publicly display, publicly perform, sublicense, and distribute the
|
73 |
+
Work and such Derivative Works in Source or Object form.
|
74 |
+
|
75 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
76 |
+
this License, each Contributor hereby grants to You a perpetual,
|
77 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
78 |
+
(except as stated in this section) patent license to make, have made,
|
79 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
80 |
+
where such license applies only to those patent claims licensable
|
81 |
+
by such Contributor that are necessarily infringed by their
|
82 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
83 |
+
with the Work to which such Contribution(s) was submitted. If You
|
84 |
+
institute patent litigation against any entity (including a
|
85 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
86 |
+
or a Contribution incorporated within the Work constitutes direct
|
87 |
+
or contributory patent infringement, then any patent licenses
|
88 |
+
granted to You under this License for that Work shall terminate
|
89 |
+
as of the date such litigation is filed.
|
90 |
+
|
91 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
92 |
+
Work or Derivative Works thereof in any medium, with or without
|
93 |
+
modifications, and in Source or Object form, provided that You
|
94 |
+
meet the following conditions:
|
95 |
+
|
96 |
+
(a) You must give any other recipients of the Work or
|
97 |
+
Derivative Works a copy of this License; and
|
98 |
+
|
99 |
+
(b) You must cause any modified files to carry prominent notices
|
100 |
+
stating that You changed the files; and
|
101 |
+
|
102 |
+
(c) You must retain, in the Source form of any Derivative Works
|
103 |
+
that You distribute, all copyright, patent, trademark, and
|
104 |
+
attribution notices from the Source form of the Work,
|
105 |
+
excluding those notices that do not pertain to any part of
|
106 |
+
the Derivative Works; and
|
107 |
+
|
108 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
109 |
+
distribution, then any Derivative Works that You distribute must
|
110 |
+
include a readable copy of the attribution notices contained
|
111 |
+
within such NOTICE file, excluding those notices that do not
|
112 |
+
pertain to any part of the Derivative Works, in at least one
|
113 |
+
of the following places: within a NOTICE text file distributed
|
114 |
+
as part of the Derivative Works; within the Source form or
|
115 |
+
documentation, if provided along with the Derivative Works; or,
|
116 |
+
within a display generated by the Derivative Works, if and
|
117 |
+
wherever such third-party notices normally appear. The contents
|
118 |
+
of the NOTICE file are for informational purposes only and
|
119 |
+
do not modify the License. You may add Your own attribution
|
120 |
+
notices within Derivative Works that You distribute, alongside
|
121 |
+
or as an addendum to the NOTICE text from the Work, provided
|
122 |
+
that such additional attribution notices cannot be construed
|
123 |
+
as modifying the License.
|
124 |
+
|
125 |
+
You may add Your own copyright statement to Your modifications and
|
126 |
+
may provide additional or different license terms and conditions
|
127 |
+
for use, reproduction, or distribution of Your modifications, or
|
128 |
+
for any such Derivative Works as a whole, provided Your use,
|
129 |
+
reproduction, and distribution of the Work otherwise complies with
|
130 |
+
the conditions stated in this License.
|
131 |
+
|
132 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
133 |
+
any Contribution intentionally submitted for inclusion in the Work
|
134 |
+
by You to the Licensor shall be under the terms and conditions of
|
135 |
+
this License, without any additional terms or conditions.
|
136 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
137 |
+
the terms of any separate license agreement you may have executed
|
138 |
+
with Licensor regarding such Contributions.
|
139 |
+
|
140 |
+
6. Trademarks. This License does not grant permission to use the trade
|
141 |
+
names, trademarks, service marks, or product names of the Licensor,
|
142 |
+
except as required for reasonable and customary use in describing the
|
143 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
144 |
+
|
145 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
146 |
+
agreed to in writing, Licensor provides the Work (and each
|
147 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
148 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
149 |
+
implied, including, without limitation, any warranties or conditions
|
150 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
151 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
152 |
+
appropriateness of using or redistributing the Work and assume any
|
153 |
+
risks associated with Your exercise of permissions under this License.
|
154 |
+
|
155 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
156 |
+
whether in tort (including negligence), contract, or otherwise,
|
157 |
+
unless required by applicable law (such as deliberate and grossly
|
158 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
159 |
+
liable to You for damages, including any direct, indirect, special,
|
160 |
+
incidental, or consequential damages of any character arising as a
|
161 |
+
result of this License or out of the use or inability to use the
|
162 |
+
Work (including but not limited to damages for loss of goodwill,
|
163 |
+
work stoppage, computer failure or malfunction, or any and all
|
164 |
+
other commercial damages or losses), even if such Contributor
|
165 |
+
has been advised of the possibility of such damages.
|
166 |
+
|
167 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
168 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
169 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
170 |
+
or other liability obligations and/or rights consistent with this
|
171 |
+
License. However, in accepting such obligations, You may act only
|
172 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
173 |
+
of any other Contributor, and only if You agree to indemnify,
|
174 |
+
defend, and hold each Contributor harmless for any liability
|
175 |
+
incurred by, or claims asserted against, such Contributor by reason
|
176 |
+
of your accepting any such warranty or additional liability.
|
177 |
+
|
178 |
+
END OF TERMS AND CONDITIONS
|
179 |
+
|
180 |
+
APPENDIX: How to apply the Apache License to your work.
|
181 |
+
|
182 |
+
To apply the Apache License to your work, attach the following
|
183 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
184 |
+
replaced with your own identifying information. (Don't include
|
185 |
+
the brackets!) The text should be enclosed in the appropriate
|
186 |
+
comment syntax for the file format. We also recommend that a
|
187 |
+
file or class name and description of purpose be included on the
|
188 |
+
same "printed page" as the copyright notice for easier
|
189 |
+
identification within third-party archives.
|
190 |
+
|
191 |
+
Copyright [yyyy] [name of copyright owner]
|
192 |
+
|
193 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
194 |
+
you may not use this file except in compliance with the License.
|
195 |
+
You may obtain a copy of the License at
|
196 |
+
|
197 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
198 |
+
|
199 |
+
Unless required by applicable law or agreed to in writing, software
|
200 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
201 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
202 |
+
See the License for the specific language governing permissions and
|
203 |
+
limitations under the License.
|
public/gpt-2/transformers-4.9.1.dist-info/METADATA
ADDED
@@ -0,0 +1,547 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Metadata-Version: 2.1
|
2 |
+
Name: transformers
|
3 |
+
Version: 4.9.1
|
4 |
+
Summary: State-of-the-art Natural Language Processing for TensorFlow 2.0 and PyTorch
|
5 |
+
Home-page: https://github.com/huggingface/transformers
|
6 |
+
Author: Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Sam Shleifer, Patrick von Platen, Sylvain Gugger, Suraj Patil, Stas Bekman, Google AI Language Team Authors, Open AI team Authors, Facebook AI Authors, Carnegie Mellon University Authors
|
7 |
+
Author-email: [email protected]
|
8 |
+
License: Apache
|
9 |
+
Keywords: NLP deep learning transformer pytorch tensorflow BERT GPT GPT-2 google openai CMU
|
10 |
+
Platform: UNKNOWN
|
11 |
+
Classifier: Development Status :: 5 - Production/Stable
|
12 |
+
Classifier: Intended Audience :: Developers
|
13 |
+
Classifier: Intended Audience :: Education
|
14 |
+
Classifier: Intended Audience :: Science/Research
|
15 |
+
Classifier: License :: OSI Approved :: Apache Software License
|
16 |
+
Classifier: Operating System :: OS Independent
|
17 |
+
Classifier: Programming Language :: Python :: 3
|
18 |
+
Classifier: Programming Language :: Python :: 3.6
|
19 |
+
Classifier: Programming Language :: Python :: 3.7
|
20 |
+
Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
|
21 |
+
Requires-Python: >=3.6.0
|
22 |
+
Description-Content-Type: text/markdown
|
23 |
+
Requires-Dist: filelock
|
24 |
+
Requires-Dist: huggingface-hub (==0.0.12)
|
25 |
+
Requires-Dist: numpy (>=1.17)
|
26 |
+
Requires-Dist: packaging
|
27 |
+
Requires-Dist: pyyaml (>=5.1)
|
28 |
+
Requires-Dist: regex (!=2019.12.17)
|
29 |
+
Requires-Dist: requests
|
30 |
+
Requires-Dist: sacremoses
|
31 |
+
Requires-Dist: tokenizers (<0.11,>=0.10.1)
|
32 |
+
Requires-Dist: tqdm (>=4.27)
|
33 |
+
Requires-Dist: dataclasses ; python_version < "3.7"
|
34 |
+
Requires-Dist: importlib-metadata ; python_version < "3.8"
|
35 |
+
Provides-Extra: all
|
36 |
+
Requires-Dist: tensorflow (>=2.3) ; extra == 'all'
|
37 |
+
Requires-Dist: onnxconverter-common ; extra == 'all'
|
38 |
+
Requires-Dist: keras2onnx ; extra == 'all'
|
39 |
+
Requires-Dist: torch (>=1.0) ; extra == 'all'
|
40 |
+
Requires-Dist: jax (>=0.2.8) ; extra == 'all'
|
41 |
+
Requires-Dist: jaxlib (>=0.1.65) ; extra == 'all'
|
42 |
+
Requires-Dist: flax (>=0.3.4) ; extra == 'all'
|
43 |
+
Requires-Dist: optax (>=0.0.8) ; extra == 'all'
|
44 |
+
Requires-Dist: sentencepiece (==0.1.91) ; extra == 'all'
|
45 |
+
Requires-Dist: protobuf ; extra == 'all'
|
46 |
+
Requires-Dist: tokenizers (<0.11,>=0.10.1) ; extra == 'all'
|
47 |
+
Requires-Dist: soundfile ; extra == 'all'
|
48 |
+
Requires-Dist: torchaudio ; extra == 'all'
|
49 |
+
Requires-Dist: Pillow ; extra == 'all'
|
50 |
+
Requires-Dist: optuna ; extra == 'all'
|
51 |
+
Requires-Dist: ray[tune] ; extra == 'all'
|
52 |
+
Requires-Dist: timm ; extra == 'all'
|
53 |
+
Requires-Dist: codecarbon (==1.2.0) ; extra == 'all'
|
54 |
+
Provides-Extra: codecarbon
|
55 |
+
Requires-Dist: codecarbon (==1.2.0) ; extra == 'codecarbon'
|
56 |
+
Provides-Extra: deepspeed
|
57 |
+
Requires-Dist: deepspeed (>=0.4.3) ; extra == 'deepspeed'
|
58 |
+
Provides-Extra: dev
|
59 |
+
Requires-Dist: tensorflow (>=2.3) ; extra == 'dev'
|
60 |
+
Requires-Dist: onnxconverter-common ; extra == 'dev'
|
61 |
+
Requires-Dist: keras2onnx ; extra == 'dev'
|
62 |
+
Requires-Dist: torch (>=1.0) ; extra == 'dev'
|
63 |
+
Requires-Dist: jax (>=0.2.8) ; extra == 'dev'
|
64 |
+
Requires-Dist: jaxlib (>=0.1.65) ; extra == 'dev'
|
65 |
+
Requires-Dist: flax (>=0.3.4) ; extra == 'dev'
|
66 |
+
Requires-Dist: optax (>=0.0.8) ; extra == 'dev'
|
67 |
+
Requires-Dist: sentencepiece (==0.1.91) ; extra == 'dev'
|
68 |
+
Requires-Dist: protobuf ; extra == 'dev'
|
69 |
+
Requires-Dist: tokenizers (<0.11,>=0.10.1) ; extra == 'dev'
|
70 |
+
Requires-Dist: soundfile ; extra == 'dev'
|
71 |
+
Requires-Dist: torchaudio ; extra == 'dev'
|
72 |
+
Requires-Dist: Pillow ; extra == 'dev'
|
73 |
+
Requires-Dist: optuna ; extra == 'dev'
|
74 |
+
Requires-Dist: ray[tune] ; extra == 'dev'
|
75 |
+
Requires-Dist: timm ; extra == 'dev'
|
76 |
+
Requires-Dist: codecarbon (==1.2.0) ; extra == 'dev'
|
77 |
+
Requires-Dist: pytest ; extra == 'dev'
|
78 |
+
Requires-Dist: pytest-xdist ; extra == 'dev'
|
79 |
+
Requires-Dist: timeout-decorator ; extra == 'dev'
|
80 |
+
Requires-Dist: parameterized ; extra == 'dev'
|
81 |
+
Requires-Dist: psutil ; extra == 'dev'
|
82 |
+
Requires-Dist: datasets ; extra == 'dev'
|
83 |
+
Requires-Dist: pytest-timeout ; extra == 'dev'
|
84 |
+
Requires-Dist: black (==21.4b0) ; extra == 'dev'
|
85 |
+
Requires-Dist: sacrebleu (>=1.4.12) ; extra == 'dev'
|
86 |
+
Requires-Dist: rouge-score ; extra == 'dev'
|
87 |
+
Requires-Dist: nltk ; extra == 'dev'
|
88 |
+
Requires-Dist: GitPython ; extra == 'dev'
|
89 |
+
Requires-Dist: faiss-cpu ; extra == 'dev'
|
90 |
+
Requires-Dist: cookiecutter (==1.7.2) ; extra == 'dev'
|
91 |
+
Requires-Dist: isort (>=5.5.4) ; extra == 'dev'
|
92 |
+
Requires-Dist: flake8 (>=3.8.3) ; extra == 'dev'
|
93 |
+
Requires-Dist: fugashi (>=1.0) ; extra == 'dev'
|
94 |
+
Requires-Dist: ipadic (<2.0,>=1.0.0) ; extra == 'dev'
|
95 |
+
Requires-Dist: unidic-lite (>=1.0.7) ; extra == 'dev'
|
96 |
+
Requires-Dist: unidic (>=1.0.2) ; extra == 'dev'
|
97 |
+
Requires-Dist: docutils (==0.16.0) ; extra == 'dev'
|
98 |
+
Requires-Dist: recommonmark ; extra == 'dev'
|
99 |
+
Requires-Dist: sphinx (==3.2.1) ; extra == 'dev'
|
100 |
+
Requires-Dist: sphinx-markdown-tables ; extra == 'dev'
|
101 |
+
Requires-Dist: sphinx-rtd-theme (==0.4.3) ; extra == 'dev'
|
102 |
+
Requires-Dist: sphinx-copybutton ; extra == 'dev'
|
103 |
+
Requires-Dist: sphinxext-opengraph (==0.4.1) ; extra == 'dev'
|
104 |
+
Requires-Dist: scikit-learn ; extra == 'dev'
|
105 |
+
Provides-Extra: docs
|
106 |
+
Requires-Dist: tensorflow (>=2.3) ; extra == 'docs'
|
107 |
+
Requires-Dist: onnxconverter-common ; extra == 'docs'
|
108 |
+
Requires-Dist: keras2onnx ; extra == 'docs'
|
109 |
+
Requires-Dist: torch (>=1.0) ; extra == 'docs'
|
110 |
+
Requires-Dist: jax (>=0.2.8) ; extra == 'docs'
|
111 |
+
Requires-Dist: jaxlib (>=0.1.65) ; extra == 'docs'
|
112 |
+
Requires-Dist: flax (>=0.3.4) ; extra == 'docs'
|
113 |
+
Requires-Dist: optax (>=0.0.8) ; extra == 'docs'
|
114 |
+
Requires-Dist: sentencepiece (==0.1.91) ; extra == 'docs'
|
115 |
+
Requires-Dist: protobuf ; extra == 'docs'
|
116 |
+
Requires-Dist: tokenizers (<0.11,>=0.10.1) ; extra == 'docs'
|
117 |
+
Requires-Dist: soundfile ; extra == 'docs'
|
118 |
+
Requires-Dist: torchaudio ; extra == 'docs'
|
119 |
+
Requires-Dist: Pillow ; extra == 'docs'
|
120 |
+
Requires-Dist: optuna ; extra == 'docs'
|
121 |
+
Requires-Dist: ray[tune] ; extra == 'docs'
|
122 |
+
Requires-Dist: timm ; extra == 'docs'
|
123 |
+
Requires-Dist: codecarbon (==1.2.0) ; extra == 'docs'
|
124 |
+
Requires-Dist: docutils (==0.16.0) ; extra == 'docs'
|
125 |
+
Requires-Dist: recommonmark ; extra == 'docs'
|
126 |
+
Requires-Dist: sphinx (==3.2.1) ; extra == 'docs'
|
127 |
+
Requires-Dist: sphinx-markdown-tables ; extra == 'docs'
|
128 |
+
Requires-Dist: sphinx-rtd-theme (==0.4.3) ; extra == 'docs'
|
129 |
+
Requires-Dist: sphinx-copybutton ; extra == 'docs'
|
130 |
+
Requires-Dist: sphinxext-opengraph (==0.4.1) ; extra == 'docs'
|
131 |
+
Provides-Extra: docs_specific
|
132 |
+
Requires-Dist: docutils (==0.16.0) ; extra == 'docs_specific'
|
133 |
+
Requires-Dist: recommonmark ; extra == 'docs_specific'
|
134 |
+
Requires-Dist: sphinx (==3.2.1) ; extra == 'docs_specific'
|
135 |
+
Requires-Dist: sphinx-markdown-tables ; extra == 'docs_specific'
|
136 |
+
Requires-Dist: sphinx-rtd-theme (==0.4.3) ; extra == 'docs_specific'
|
137 |
+
Requires-Dist: sphinx-copybutton ; extra == 'docs_specific'
|
138 |
+
Requires-Dist: sphinxext-opengraph (==0.4.1) ; extra == 'docs_specific'
|
139 |
+
Provides-Extra: fairscale
|
140 |
+
Requires-Dist: fairscale (>0.3) ; extra == 'fairscale'
|
141 |
+
Provides-Extra: flax
|
142 |
+
Requires-Dist: jax (>=0.2.8) ; extra == 'flax'
|
143 |
+
Requires-Dist: jaxlib (>=0.1.65) ; extra == 'flax'
|
144 |
+
Requires-Dist: flax (>=0.3.4) ; extra == 'flax'
|
145 |
+
Requires-Dist: optax (>=0.0.8) ; extra == 'flax'
|
146 |
+
Provides-Extra: integrations
|
147 |
+
Requires-Dist: optuna ; extra == 'integrations'
|
148 |
+
Requires-Dist: ray[tune] ; extra == 'integrations'
|
149 |
+
Provides-Extra: ja
|
150 |
+
Requires-Dist: fugashi (>=1.0) ; extra == 'ja'
|
151 |
+
Requires-Dist: ipadic (<2.0,>=1.0.0) ; extra == 'ja'
|
152 |
+
Requires-Dist: unidic-lite (>=1.0.7) ; extra == 'ja'
|
153 |
+
Requires-Dist: unidic (>=1.0.2) ; extra == 'ja'
|
154 |
+
Provides-Extra: modelcreation
|
155 |
+
Requires-Dist: cookiecutter (==1.7.2) ; extra == 'modelcreation'
|
156 |
+
Provides-Extra: onnx
|
157 |
+
Requires-Dist: onnxconverter-common ; extra == 'onnx'
|
158 |
+
Requires-Dist: keras2onnx ; extra == 'onnx'
|
159 |
+
Requires-Dist: onnxruntime (>=1.4.0) ; extra == 'onnx'
|
160 |
+
Requires-Dist: onnxruntime-tools (>=1.4.2) ; extra == 'onnx'
|
161 |
+
Provides-Extra: onnxruntime
|
162 |
+
Requires-Dist: onnxruntime (>=1.4.0) ; extra == 'onnxruntime'
|
163 |
+
Requires-Dist: onnxruntime-tools (>=1.4.2) ; extra == 'onnxruntime'
|
164 |
+
Provides-Extra: optuna
|
165 |
+
Requires-Dist: optuna ; extra == 'optuna'
|
166 |
+
Provides-Extra: quality
|
167 |
+
Requires-Dist: black (==21.4b0) ; extra == 'quality'
|
168 |
+
Requires-Dist: isort (>=5.5.4) ; extra == 'quality'
|
169 |
+
Requires-Dist: flake8 (>=3.8.3) ; extra == 'quality'
|
170 |
+
Provides-Extra: ray
|
171 |
+
Requires-Dist: ray[tune] ; extra == 'ray'
|
172 |
+
Provides-Extra: retrieval
|
173 |
+
Requires-Dist: faiss-cpu ; extra == 'retrieval'
|
174 |
+
Requires-Dist: datasets ; extra == 'retrieval'
|
175 |
+
Provides-Extra: sagemaker
|
176 |
+
Requires-Dist: sagemaker (>=2.31.0) ; extra == 'sagemaker'
|
177 |
+
Provides-Extra: sentencepiece
|
178 |
+
Requires-Dist: sentencepiece (==0.1.91) ; extra == 'sentencepiece'
|
179 |
+
Requires-Dist: protobuf ; extra == 'sentencepiece'
|
180 |
+
Provides-Extra: serving
|
181 |
+
Requires-Dist: pydantic ; extra == 'serving'
|
182 |
+
Requires-Dist: uvicorn ; extra == 'serving'
|
183 |
+
Requires-Dist: fastapi ; extra == 'serving'
|
184 |
+
Requires-Dist: starlette ; extra == 'serving'
|
185 |
+
Provides-Extra: sklearn
|
186 |
+
Requires-Dist: scikit-learn ; extra == 'sklearn'
|
187 |
+
Provides-Extra: speech
|
188 |
+
Requires-Dist: soundfile ; extra == 'speech'
|
189 |
+
Requires-Dist: torchaudio ; extra == 'speech'
|
190 |
+
Provides-Extra: testing
|
191 |
+
Requires-Dist: pytest ; extra == 'testing'
|
192 |
+
Requires-Dist: pytest-xdist ; extra == 'testing'
|
193 |
+
Requires-Dist: timeout-decorator ; extra == 'testing'
|
194 |
+
Requires-Dist: parameterized ; extra == 'testing'
|
195 |
+
Requires-Dist: psutil ; extra == 'testing'
|
196 |
+
Requires-Dist: datasets ; extra == 'testing'
|
197 |
+
Requires-Dist: pytest-timeout ; extra == 'testing'
|
198 |
+
Requires-Dist: black (==21.4b0) ; extra == 'testing'
|
199 |
+
Requires-Dist: sacrebleu (>=1.4.12) ; extra == 'testing'
|
200 |
+
Requires-Dist: rouge-score ; extra == 'testing'
|
201 |
+
Requires-Dist: nltk ; extra == 'testing'
|
202 |
+
Requires-Dist: GitPython ; extra == 'testing'
|
203 |
+
Requires-Dist: faiss-cpu ; extra == 'testing'
|
204 |
+
Requires-Dist: cookiecutter (==1.7.2) ; extra == 'testing'
|
205 |
+
Provides-Extra: tf
|
206 |
+
Requires-Dist: tensorflow (>=2.3) ; extra == 'tf'
|
207 |
+
Requires-Dist: onnxconverter-common ; extra == 'tf'
|
208 |
+
Requires-Dist: keras2onnx ; extra == 'tf'
|
209 |
+
Provides-Extra: tf-cpu
|
210 |
+
Requires-Dist: tensorflow-cpu (>=2.3) ; extra == 'tf-cpu'
|
211 |
+
Requires-Dist: onnxconverter-common ; extra == 'tf-cpu'
|
212 |
+
Requires-Dist: keras2onnx ; extra == 'tf-cpu'
|
213 |
+
Provides-Extra: timm
|
214 |
+
Requires-Dist: timm ; extra == 'timm'
|
215 |
+
Provides-Extra: tokenizers
|
216 |
+
Requires-Dist: tokenizers (<0.11,>=0.10.1) ; extra == 'tokenizers'
|
217 |
+
Provides-Extra: torch
|
218 |
+
Requires-Dist: torch (>=1.0) ; extra == 'torch'
|
219 |
+
Provides-Extra: torchhub
|
220 |
+
Requires-Dist: filelock ; extra == 'torchhub'
|
221 |
+
Requires-Dist: huggingface-hub (==0.0.12) ; extra == 'torchhub'
|
222 |
+
Requires-Dist: importlib-metadata ; extra == 'torchhub'
|
223 |
+
Requires-Dist: numpy (>=1.17) ; extra == 'torchhub'
|
224 |
+
Requires-Dist: packaging ; extra == 'torchhub'
|
225 |
+
Requires-Dist: protobuf ; extra == 'torchhub'
|
226 |
+
Requires-Dist: regex (!=2019.12.17) ; extra == 'torchhub'
|
227 |
+
Requires-Dist: requests ; extra == 'torchhub'
|
228 |
+
Requires-Dist: sacremoses ; extra == 'torchhub'
|
229 |
+
Requires-Dist: sentencepiece (==0.1.91) ; extra == 'torchhub'
|
230 |
+
Requires-Dist: torch (>=1.0) ; extra == 'torchhub'
|
231 |
+
Requires-Dist: tokenizers (<0.11,>=0.10.1) ; extra == 'torchhub'
|
232 |
+
Requires-Dist: tqdm (>=4.27) ; extra == 'torchhub'
|
233 |
+
Provides-Extra: vision
|
234 |
+
Requires-Dist: Pillow ; extra == 'vision'
|
235 |
+
|
236 |
+
<!---
|
237 |
+
Copyright 2020 The HuggingFace Team. All rights reserved.
|
238 |
+
|
239 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
240 |
+
you may not use this file except in compliance with the License.
|
241 |
+
You may obtain a copy of the License at
|
242 |
+
|
243 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
244 |
+
|
245 |
+
Unless required by applicable law or agreed to in writing, software
|
246 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
247 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
248 |
+
See the License for the specific language governing permissions and
|
249 |
+
limitations under the License.
|
250 |
+
-->
|
251 |
+
|
252 |
+
<p align="center">
|
253 |
+
<br>
|
254 |
+
<img src="https://raw.githubusercontent.com/huggingface/transformers/master/docs/source/imgs/transformers_logo_name.png" width="400"/>
|
255 |
+
<br>
|
256 |
+
<p>
|
257 |
+
<p align="center">
|
258 |
+
<a href="https://circleci.com/gh/huggingface/transformers">
|
259 |
+
<img alt="Build" src="https://img.shields.io/circleci/build/github/huggingface/transformers/master">
|
260 |
+
</a>
|
261 |
+
<a href="https://github.com/huggingface/transformers/blob/master/LICENSE">
|
262 |
+
<img alt="GitHub" src="https://img.shields.io/github/license/huggingface/transformers.svg?color=blue">
|
263 |
+
</a>
|
264 |
+
<a href="https://huggingface.co/transformers/index.html">
|
265 |
+
<img alt="Documentation" src="https://img.shields.io/website/http/huggingface.co/transformers/index.html.svg?down_color=red&down_message=offline&up_message=online">
|
266 |
+
</a>
|
267 |
+
<a href="https://github.com/huggingface/transformers/releases">
|
268 |
+
<img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/transformers.svg">
|
269 |
+
</a>
|
270 |
+
<a href="https://github.com/huggingface/transformers/blob/master/CODE_OF_CONDUCT.md">
|
271 |
+
<img alt="Contributor Covenant" src="https://img.shields.io/badge/Contributor%20Covenant-v2.0%20adopted-ff69b4.svg">
|
272 |
+
</a>
|
273 |
+
<a href="https://zenodo.org/badge/latestdoi/155220641"><img src="https://zenodo.org/badge/155220641.svg" alt="DOI"></a>
|
274 |
+
</p>
|
275 |
+
|
276 |
+
<h4 align="center">
|
277 |
+
<p>
|
278 |
+
<b>English</b> |
|
279 |
+
<a href="https://github.com/huggingface/transformers/blob/master/README_zh-hans.md">简体中文</a> |
|
280 |
+
<a href="https://github.com/huggingface/transformers/blob/master/README_zh-hant.md">繁體中文</a>
|
281 |
+
<p>
|
282 |
+
</h4>
|
283 |
+
|
284 |
+
<h3 align="center">
|
285 |
+
<p>State-of-the-art Natural Language Processing for Jax, PyTorch and TensorFlow</p>
|
286 |
+
</h3>
|
287 |
+
|
288 |
+
<h3 align="center">
|
289 |
+
<a href="https://hf.co/course"><img src="https://raw.githubusercontent.com/huggingface/transformers/master/docs/source/imgs/course_banner.png"></a>
|
290 |
+
</h3>
|
291 |
+
|
292 |
+
🤗 Transformers provides thousands of pretrained models to perform tasks on texts such as classification, information extraction, question answering, summarization, translation, text generation and more in over 100 languages. Its aim is to make cutting-edge NLP easier to use for everyone.
|
293 |
+
|
294 |
+
🤗 Transformers provides APIs to quickly download and use those pretrained models on a given text, fine-tune them on your own datasets and then share them with the community on our [model hub](https://huggingface.co/models). At the same time, each python module defining an architecture is fully standalone and can be modified to enable quick research experiments.
|
295 |
+
|
296 |
+
🤗 Transformers is backed by the three most popular deep learning libraries — [Jax](https://jax.readthedocs.io/en/latest/), [PyTorch](https://pytorch.org/) and [TensorFlow](https://www.tensorflow.org/) — with a seamless integration between them. It's straightforward to train your models with one before loading them for inference with the other.
|
297 |
+
|
298 |
+
## Online demos
|
299 |
+
|
300 |
+
You can test most of our models directly on their pages from the [model hub](https://huggingface.co/models). We also offer [private model hosting, versioning, & an inference API](https://huggingface.co/pricing) for public and private models.
|
301 |
+
|
302 |
+
Here are a few examples:
|
303 |
+
- [Masked word completion with BERT](https://huggingface.co/bert-base-uncased?text=Paris+is+the+%5BMASK%5D+of+France)
|
304 |
+
- [Name Entity Recognition with Electra](https://huggingface.co/dbmdz/electra-large-discriminator-finetuned-conll03-english?text=My+name+is+Sarah+and+I+live+in+London+city)
|
305 |
+
- [Text generation with GPT-2](https://huggingface.co/gpt2?text=A+long+time+ago%2C+)
|
306 |
+
- [Natural Language Inference with RoBERTa](https://huggingface.co/roberta-large-mnli?text=The+dog+was+lost.+Nobody+lost+any+animal)
|
307 |
+
- [Summarization with BART](https://huggingface.co/facebook/bart-large-cnn?text=The+tower+is+324+metres+%281%2C063+ft%29+tall%2C+about+the+same+height+as+an+81-storey+building%2C+and+the+tallest+structure+in+Paris.+Its+base+is+square%2C+measuring+125+metres+%28410+ft%29+on+each+side.+During+its+construction%2C+the+Eiffel+Tower+surpassed+the+Washington+Monument+to+become+the+tallest+man-made+structure+in+the+world%2C+a+title+it+held+for+41+years+until+the+Chrysler+Building+in+New+York+City+was+finished+in+1930.+It+was+the+first+structure+to+reach+a+height+of+300+metres.+Due+to+the+addition+of+a+broadcasting+aerial+at+the+top+of+the+tower+in+1957%2C+it+is+now+taller+than+the+Chrysler+Building+by+5.2+metres+%2817+ft%29.+Excluding+transmitters%2C+the+Eiffel+Tower+is+the+second+tallest+free-standing+structure+in+France+after+the+Millau+Viaduct)
|
308 |
+
- [Question answering with DistilBERT](https://huggingface.co/distilbert-base-uncased-distilled-squad?text=Which+name+is+also+used+to+describe+the+Amazon+rainforest+in+English%3F&context=The+Amazon+rainforest+%28Portuguese%3A+Floresta+Amaz%C3%B4nica+or+Amaz%C3%B4nia%3B+Spanish%3A+Selva+Amaz%C3%B3nica%2C+Amazon%C3%ADa+or+usually+Amazonia%3B+French%3A+For%C3%AAt+amazonienne%3B+Dutch%3A+Amazoneregenwoud%29%2C+also+known+in+English+as+Amazonia+or+the+Amazon+Jungle%2C+is+a+moist+broadleaf+forest+that+covers+most+of+the+Amazon+basin+of+South+America.+This+basin+encompasses+7%2C000%2C000+square+kilometres+%282%2C700%2C000+sq+mi%29%2C+of+which+5%2C500%2C000+square+kilometres+%282%2C100%2C000+sq+mi%29+are+covered+by+the+rainforest.+This+region+includes+territory+belonging+to+nine+nations.+The+majority+of+the+forest+is+contained+within+Brazil%2C+with+60%25+of+the+rainforest%2C+followed+by+Peru+with+13%25%2C+Colombia+with+10%25%2C+and+with+minor+amounts+in+Venezuela%2C+Ecuador%2C+Bolivia%2C+Guyana%2C+Suriname+and+French+Guiana.+States+or+departments+in+four+nations+contain+%22Amazonas%22+in+their+names.+The+Amazon+represents+over+half+of+the+planet%27s+remaining+rainforests%2C+and+comprises+the+largest+and+most+biodiverse+tract+of+tropical+rainforest+in+the+world%2C+with+an+estimated+390+billion+individual+trees+divided+into+16%2C000+species)
|
309 |
+
- [Translation with T5](https://huggingface.co/t5-base?text=My+name+is+Wolfgang+and+I+live+in+Berlin)
|
310 |
+
|
311 |
+
**[Write With Transformer](https://transformer.huggingface.co)**, built by the Hugging Face team, is the official demo of this repo’s text generation capabilities.
|
312 |
+
|
313 |
+
## If you are looking for custom support from the Hugging Face team
|
314 |
+
|
315 |
+
<a target="_blank" href="https://huggingface.co/support">
|
316 |
+
<img alt="HuggingFace Expert Acceleration Program" src="https://huggingface.co/front/thumbnails/support.png" style="max-width: 600px; border: 1px solid #eee; border-radius: 4px; box-shadow: 0 1px 2px 0 rgba(0, 0, 0, 0.05);">
|
317 |
+
</a><br>
|
318 |
+
|
319 |
+
## Quick tour
|
320 |
+
|
321 |
+
To immediately use a model on a given text, we provide the `pipeline` API. Pipelines group together a pretrained model with the preprocessing that was used during that model's training. Here is how to quickly use a pipeline to classify positive versus negative texts:
|
322 |
+
|
323 |
+
```python
|
324 |
+
>>> from transformers import pipeline
|
325 |
+
|
326 |
+
# Allocate a pipeline for sentiment-analysis
|
327 |
+
>>> classifier = pipeline('sentiment-analysis')
|
328 |
+
>>> classifier('We are very happy to introduce pipeline to the transformers repository.')
|
329 |
+
[{'label': 'POSITIVE', 'score': 0.9996980428695679}]
|
330 |
+
```
|
331 |
+
|
332 |
+
The second line of code downloads and caches the pretrained model used by the pipeline, while the third evaluates it on the given text. Here the answer is "positive" with a confidence of 99.97%.
|
333 |
+
|
334 |
+
Many NLP tasks have a pre-trained `pipeline` ready to go. For example, we can easily extract question answers given context:
|
335 |
+
|
336 |
+
``` python
|
337 |
+
>>> from transformers import pipeline
|
338 |
+
|
339 |
+
# Allocate a pipeline for question-answering
|
340 |
+
>>> question_answerer = pipeline('question-answering')
|
341 |
+
>>> question_answerer({
|
342 |
+
... 'question': 'What is the name of the repository ?',
|
343 |
+
... 'context': 'Pipeline has been included in the huggingface/transformers repository'
|
344 |
+
... })
|
345 |
+
{'score': 0.30970096588134766, 'start': 34, 'end': 58, 'answer': 'huggingface/transformers'}
|
346 |
+
|
347 |
+
```
|
348 |
+
|
349 |
+
In addition to the answer, the pretrained model used here returned its confidence score, along with the start position and end position of the answer in the tokenized sentence. You can learn more about the tasks supported by the `pipeline` API in [this tutorial](https://huggingface.co/transformers/task_summary.html).
|
350 |
+
|
351 |
+
To download and use any of the pretrained models on your given task, all it takes is three lines of code. Here is the PyTorch version:
|
352 |
+
```python
|
353 |
+
>>> from transformers import AutoTokenizer, AutoModel
|
354 |
+
|
355 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
356 |
+
>>> model = AutoModel.from_pretrained("bert-base-uncased")
|
357 |
+
|
358 |
+
>>> inputs = tokenizer("Hello world!", return_tensors="pt")
|
359 |
+
>>> outputs = model(**inputs)
|
360 |
+
```
|
361 |
+
And here is the equivalent code for TensorFlow:
|
362 |
+
```python
|
363 |
+
>>> from transformers import AutoTokenizer, TFAutoModel
|
364 |
+
|
365 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
366 |
+
>>> model = TFAutoModel.from_pretrained("bert-base-uncased")
|
367 |
+
|
368 |
+
>>> inputs = tokenizer("Hello world!", return_tensors="tf")
|
369 |
+
>>> outputs = model(**inputs)
|
370 |
+
```
|
371 |
+
|
372 |
+
The tokenizer is responsible for all the preprocessing the pretrained model expects, and can be called directly on a single string (as in the above examples) or a list. It will output a dictionary that you can use in downstream code or simply directly pass to your model using the ** argument unpacking operator.
|
373 |
+
|
374 |
+
The model itself is a regular [Pytorch `nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) or a [TensorFlow `tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model) (depending on your backend) which you can use normally. [This tutorial](https://huggingface.co/transformers/training.html) explains how to integrate such a model into a classic PyTorch or TensorFlow training loop, or how to use our `Trainer` API to quickly fine-tune on a new dataset.
|
375 |
+
|
376 |
+
## Why should I use transformers?
|
377 |
+
|
378 |
+
1. Easy-to-use state-of-the-art models:
|
379 |
+
- High performance on NLU and NLG tasks.
|
380 |
+
- Low barrier to entry for educators and practitioners.
|
381 |
+
- Few user-facing abstractions with just three classes to learn.
|
382 |
+
- A unified API for using all our pretrained models.
|
383 |
+
|
384 |
+
1. Lower compute costs, smaller carbon footprint:
|
385 |
+
- Researchers can share trained models instead of always retraining.
|
386 |
+
- Practitioners can reduce compute time and production costs.
|
387 |
+
- Dozens of architectures with over 2,000 pretrained models, some in more than 100 languages.
|
388 |
+
|
389 |
+
1. Choose the right framework for every part of a model's lifetime:
|
390 |
+
- Train state-of-the-art models in 3 lines of code.
|
391 |
+
- Move a single model between TF2.0/PyTorch frameworks at will.
|
392 |
+
- Seamlessly pick the right framework for training, evaluation and production.
|
393 |
+
|
394 |
+
1. Easily customize a model or an example to your needs:
|
395 |
+
- We provide examples for each architecture to reproduce the results published by its original authors.
|
396 |
+
- Model internals are exposed as consistently as possible.
|
397 |
+
- Model files can be used independently of the library for quick experiments.
|
398 |
+
|
399 |
+
## Why shouldn't I use transformers?
|
400 |
+
|
401 |
+
- This library is not a modular toolbox of building blocks for neural nets. The code in the model files is not refactored with additional abstractions on purpose, so that researchers can quickly iterate on each of the models without diving into additional abstractions/files.
|
402 |
+
- The training API is not intended to work on any model but is optimized to work with the models provided by the library. For generic machine learning loops, you should use another library.
|
403 |
+
- While we strive to present as many use cases as possible, the scripts in our [examples folder](https://github.com/huggingface/transformers/tree/master/examples) are just that: examples. It is expected that they won't work out-of-the box on your specific problem and that you will be required to change a few lines of code to adapt them to your needs.
|
404 |
+
|
405 |
+
## Installation
|
406 |
+
|
407 |
+
### With pip
|
408 |
+
|
409 |
+
This repository is tested on Python 3.6+, Flax 0.3.2+, PyTorch 1.3.1+ and TensorFlow 2.3+.
|
410 |
+
|
411 |
+
You should install 🤗 Transformers in a [virtual environment](https://docs.python.org/3/library/venv.html). If you're unfamiliar with Python virtual environments, check out the [user guide](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/).
|
412 |
+
|
413 |
+
First, create a virtual environment with the version of Python you're going to use and activate it.
|
414 |
+
|
415 |
+
Then, you will need to install at least one of Flax, PyTorch or TensorFlow.
|
416 |
+
Please refer to [TensorFlow installation page](https://www.tensorflow.org/install/), [PyTorch installation page](https://pytorch.org/get-started/locally/#start-locally) and/or [Flax installation page](https://github.com/google/flax#quick-install) regarding the specific install command for your platform.
|
417 |
+
|
418 |
+
When one of those backends has been installed, 🤗 Transformers can be installed using pip as follows:
|
419 |
+
|
420 |
+
```bash
|
421 |
+
pip install transformers
|
422 |
+
```
|
423 |
+
|
424 |
+
If you'd like to play with the examples or need the bleeding edge of the code and can't wait for a new release, you must [install the library from source](https://huggingface.co/transformers/installation.html#installing-from-source).
|
425 |
+
|
426 |
+
### With conda
|
427 |
+
|
428 |
+
Since Transformers version v4.0.0, we now have a conda channel: `huggingface`.
|
429 |
+
|
430 |
+
🤗 Transformers can be installed using conda as follows:
|
431 |
+
|
432 |
+
```shell script
|
433 |
+
conda install -c huggingface transformers
|
434 |
+
```
|
435 |
+
|
436 |
+
Follow the installation pages of Flax, PyTorch or TensorFlow to see how to install them with conda.
|
437 |
+
|
438 |
+
## Model architectures
|
439 |
+
|
440 |
+
**[All the model checkpoints](https://huggingface.co/models)** provided by 🤗 Transformers are seamlessly integrated from the huggingface.co [model hub](https://huggingface.co) where they are uploaded directly by [users](https://huggingface.co/users) and [organizations](https://huggingface.co/organizations).
|
441 |
+
|
442 |
+
Current number of checkpoints: ![](https://img.shields.io/endpoint?url=https://huggingface.co/api/shields/models&color=brightgreen)
|
443 |
+
|
444 |
+
🤗 Transformers currently provides the following architectures (see [here](https://huggingface.co/transformers/model_summary.html) for a high-level summary of each them):
|
445 |
+
|
446 |
+
1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.
|
447 |
+
1. **[BART](https://huggingface.co/transformers/model_doc/bart.html)** (from Facebook) released with the paper [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/pdf/1910.13461.pdf) by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer.
|
448 |
+
1. **[BARThez](https://huggingface.co/transformers/model_doc/barthez.html)** (from École polytechnique) released with the paper [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) by Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis.
|
449 |
+
1. **[BERT](https://huggingface.co/transformers/model_doc/bert.html)** (from Google) released with the paper [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova.
|
450 |
+
1. **[BERT For Sequence Generation](https://huggingface.co/transformers/model_doc/bertgeneration.html)** (from Google) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
|
451 |
+
1. **[BigBird-RoBERTa](https://huggingface.co/transformers/model_doc/bigbird.html)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
|
452 |
+
1. **[BigBird-Pegasus](https://huggingface.co/transformers/model_doc/bigbird_pegasus.html)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
|
453 |
+
1. **[Blenderbot](https://huggingface.co/transformers/model_doc/blenderbot.html)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
|
454 |
+
1. **[BlenderbotSmall](https://huggingface.co/transformers/model_doc/blenderbot_small.html)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
|
455 |
+
1. **[BORT](https://huggingface.co/transformers/model_doc/bort.html)** (from Alexa) released with the paper [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) by Adrian de Wynter and Daniel J. Perry.
|
456 |
+
1. **[ByT5](https://huggingface.co/transformers/model_doc/byt5.html)** (from Google Research) released with the paper [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) by Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel.
|
457 |
+
1. **[CamemBERT](https://huggingface.co/transformers/model_doc/camembert.html)** (from Inria/Facebook/Sorbonne) released with the paper [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) by Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.
|
458 |
+
1. **[CANINE](https://huggingface.co/transformers/model_doc/canine.html)** (from Google Research) released with the paper [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874) by Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting.
|
459 |
+
1. **[CLIP](https://huggingface.co/transformers/model_doc/clip.html)** (from OpenAI) released with the paper [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) by Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever.
|
460 |
+
1. **[ConvBERT](https://huggingface.co/transformers/model_doc/convbert.html)** (from YituTech) released with the paper [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) by Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan.
|
461 |
+
1. **[CPM](https://huggingface.co/transformers/model_doc/cpm.html)** (from Tsinghua University) released with the paper [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://arxiv.org/abs/2012.00413) by Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun.
|
462 |
+
1. **[CTRL](https://huggingface.co/transformers/model_doc/ctrl.html)** (from Salesforce) released with the paper [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher.
|
463 |
+
1. **[DeBERTa](https://huggingface.co/transformers/model_doc/deberta.html)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
|
464 |
+
1. **[DeBERTa-v2](https://huggingface.co/transformers/model_doc/deberta_v2.html)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
|
465 |
+
1. **[DeiT](https://huggingface.co/transformers/model_doc/deit.html)** (from Facebook) released with the paper [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) by Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou.
|
466 |
+
1. **[DETR](https://huggingface.co/transformers/model_doc/detr.html)** (from Facebook) released with the paper [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) by Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko.
|
467 |
+
1. **[DialoGPT](https://huggingface.co/transformers/model_doc/dialogpt.html)** (from Microsoft Research) released with the paper [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) by Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan.
|
468 |
+
1. **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace), released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into [DistilGPT2](https://github.com/huggingface/transformers/tree/master/examples/distillation), RoBERTa into [DistilRoBERTa](https://github.com/huggingface/transformers/tree/master/examples/distillation), Multilingual BERT into [DistilmBERT](https://github.com/huggingface/transformers/tree/master/examples/distillation) and a German version of DistilBERT.
|
469 |
+
1. **[DPR](https://huggingface.co/transformers/model_doc/dpr.html)** (from Facebook) released with the paper [Dense Passage Retrieval
|
470 |
+
for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906) by Vladimir Karpukhin, Barlas Oğuz, Sewon
|
471 |
+
Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih.
|
472 |
+
1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning.
|
473 |
+
1. **[FlauBERT](https://huggingface.co/transformers/model_doc/flaubert.html)** (from CNRS) released with the paper [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab.
|
474 |
+
1. **[Funnel Transformer](https://huggingface.co/transformers/model_doc/funnel.html)** (from CMU/Google Brain) released with the paper [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
|
475 |
+
1. **[GPT](https://huggingface.co/transformers/model_doc/gpt.html)** (from OpenAI) released with the paper [Improving Language Understanding by Generative Pre-Training](https://blog.openai.com/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
|
476 |
+
1. **[GPT-2](https://huggingface.co/transformers/model_doc/gpt2.html)** (from OpenAI) released with the paper [Language Models are Unsupervised Multitask Learners](https://blog.openai.com/better-language-models/) by Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever**.
|
477 |
+
1. **[GPT Neo](https://huggingface.co/transformers/model_doc/gpt_neo.html)** (from EleutherAI) released in the repository [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) by Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy.
|
478 |
+
1. **[Hubert](https://huggingface.co/transformers/model_doc/hubert.html)** (from Facebook) released with the paper [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) by Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed.
|
479 |
+
1. **[I-BERT](https://huggingface.co/transformers/model_doc/ibert.html)** (from Berkeley) released with the paper [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) by Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer
|
480 |
+
1. **[LayoutLM](https://huggingface.co/transformers/model_doc/layoutlm.html)** (from Microsoft Research Asia) released with the paper [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) by Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou.
|
481 |
+
1. **[LED](https://huggingface.co/transformers/model_doc/led.html)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
|
482 |
+
1. **[Longformer](https://huggingface.co/transformers/model_doc/longformer.html)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
|
483 |
+
1. **[LUKE](https://huggingface.co/transformers/model_doc/luke.html)** (from Studio Ousia) released with the paper [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) by Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto.
|
484 |
+
1. **[LXMERT](https://huggingface.co/transformers/model_doc/lxmert.html)** (from UNC Chapel Hill) released with the paper [LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering](https://arxiv.org/abs/1908.07490) by Hao Tan and Mohit Bansal.
|
485 |
+
1. **[M2M100](https://huggingface.co/transformers/model_doc/m2m_100.html)** (from Facebook) released with the paper [Beyond English-Centric Multilingual Machine Translation](https://arxiv.org/abs/2010.11125) by by Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin.
|
486 |
+
1. **[MarianMT](https://huggingface.co/transformers/model_doc/marian.html)** Machine translation models trained using [OPUS](http://opus.nlpl.eu/) data by Jörg Tiedemann. The [Marian Framework](https://marian-nmt.github.io/) is being developed by the Microsoft Translator Team.
|
487 |
+
1. **[MBart](https://huggingface.co/transformers/model_doc/mbart.html)** (from Facebook) released with the paper [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer.
|
488 |
+
1. **[MBart-50](https://huggingface.co/transformers/model_doc/mbart.html)** (from Facebook) released with the paper [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) by Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan.
|
489 |
+
1. **[Megatron-BERT](https://huggingface.co/transformers/model_doc/megatron_bert.html)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
|
490 |
+
1. **[Megatron-GPT2](https://huggingface.co/transformers/model_doc/megatron_gpt2.html)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
|
491 |
+
1. **[MPNet](https://huggingface.co/transformers/model_doc/mpnet.html)** (from Microsoft Research) released with the paper [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu.
|
492 |
+
1. **[MT5](https://huggingface.co/transformers/model_doc/mt5.html)** (from Google AI) released with the paper [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel.
|
493 |
+
1. **[Pegasus](https://huggingface.co/transformers/model_doc/pegasus.html)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777)> by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu.
|
494 |
+
1. **[ProphetNet](https://huggingface.co/transformers/model_doc/prophetnet.html)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
|
495 |
+
1. **[Reformer](https://huggingface.co/transformers/model_doc/reformer.html)** (from Google Research) released with the paper [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya.
|
496 |
+
1. **[RoBERTa](https://huggingface.co/transformers/model_doc/roberta.html)** (from Facebook), released together with the paper a [Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov.
|
497 |
+
1. **[RoFormer](https://huggingface.co/transformers/model_doc/roformer.html)** (from ZhuiyiTechnology), released together with the paper a [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/pdf/2104.09864v1.pdf) by Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu.
|
498 |
+
1. **[SpeechToTextTransformer](https://huggingface.co/transformers/model_doc/speech_to_text.html)** (from Facebook), released together with the paper [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino.
|
499 |
+
1. **[SqueezeBert](https://huggingface.co/transformers/model_doc/squeezebert.html)** released with the paper [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer.
|
500 |
+
1. **[T5](https://huggingface.co/transformers/model_doc/t5.html)** (from Google AI) released with the paper [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
|
501 |
+
1. **[TAPAS](https://huggingface.co/transformers/model_doc/tapas.html)** (from Google AI) released with the paper [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349) by Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos.
|
502 |
+
1. **[Transformer-XL](https://huggingface.co/transformers/model_doc/transformerxl.html)** (from Google/CMU) released with the paper [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
|
503 |
+
1. **[Vision Transformer (ViT)](https://huggingface.co/transformers/model_doc/vit.html)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
|
504 |
+
1. **[VisualBERT](https://huggingface.co/transformers/model_doc/visual_bert.html)** (from UCLA NLP) released with the paper [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) by Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang.
|
505 |
+
1. **[Wav2Vec2](https://huggingface.co/transformers/model_doc/wav2vec2.html)** (from Facebook AI) released with the paper [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli.
|
506 |
+
1. **[XLM](https://huggingface.co/transformers/model_doc/xlm.html)** (from Facebook) released together with the paper [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) by Guillaume Lample and Alexis Conneau.
|
507 |
+
1. **[XLM-ProphetNet](https://huggingface.co/transformers/model_doc/xlmprophetnet.html)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
|
508 |
+
1. **[XLM-RoBERTa](https://huggingface.co/transformers/model_doc/xlmroberta.html)** (from Facebook AI), released together with the paper [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) by Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov.
|
509 |
+
1. **[XLNet](https://huggingface.co/transformers/model_doc/xlnet.html)** (from Google/CMU) released with the paper [XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le.
|
510 |
+
1. **[XLSR-Wav2Vec2](https://huggingface.co/transformers/model_doc/xlsr_wav2vec2.html)** (from Facebook AI) released with the paper [Unsupervised Cross-Lingual Representation Learning For Speech Recognition](https://arxiv.org/abs/2006.13979) by Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli.
|
511 |
+
1. Want to contribute a new model? We have added a **detailed guide and templates** to guide you in the process of adding a new model. You can find them in the [`templates`](./templates) folder of the repository. Be sure to check the [contributing guidelines](./CONTRIBUTING.md) and contact the maintainers or open an issue to collect feedbacks before starting your PR.
|
512 |
+
|
513 |
+
To check if each model has an implementation in Flax, PyTorch or TensorFlow, or has an associated tokenizer backed by the 🤗 Tokenizers library, refer to [this table](https://huggingface.co/transformers/index.html#supported-frameworks).
|
514 |
+
|
515 |
+
These implementations have been tested on several datasets (see the example scripts) and should match the performance of the original implementations. You can find more details on performance in the Examples section of the [documentation](https://huggingface.co/transformers/examples.html).
|
516 |
+
|
517 |
+
|
518 |
+
## Learn more
|
519 |
+
|
520 |
+
| Section | Description |
|
521 |
+
|-|-|
|
522 |
+
| [Documentation](https://huggingface.co/transformers/) | Full API documentation and tutorials |
|
523 |
+
| [Task summary](https://huggingface.co/transformers/task_summary.html) | Tasks supported by 🤗 Transformers |
|
524 |
+
| [Preprocessing tutorial](https://huggingface.co/transformers/preprocessing.html) | Using the `Tokenizer` class to prepare data for the models |
|
525 |
+
| [Training and fine-tuning](https://huggingface.co/transformers/training.html) | Using the models provided by 🤗 Transformers in a PyTorch/TensorFlow training loop and the `Trainer` API |
|
526 |
+
| [Quick tour: Fine-tuning/usage scripts](https://github.com/huggingface/transformers/tree/master/examples) | Example scripts for fine-tuning models on a wide range of tasks |
|
527 |
+
| [Model sharing and uploading](https://huggingface.co/transformers/model_sharing.html) | Upload and share your fine-tuned models with the community |
|
528 |
+
| [Migration](https://huggingface.co/transformers/migration.html) | Migrate to 🤗 Transformers from `pytorch-transformers` or `pytorch-pretrained-bert` |
|
529 |
+
|
530 |
+
## Citation
|
531 |
+
|
532 |
+
We now have a [paper](https://www.aclweb.org/anthology/2020.emnlp-demos.6/) you can cite for the 🤗 Transformers library:
|
533 |
+
```bibtex
|
534 |
+
@inproceedings{wolf-etal-2020-transformers,
|
535 |
+
title = "Transformers: State-of-the-Art Natural Language Processing",
|
536 |
+
author = "Thomas Wolf and Lysandre Debut and Victor Sanh and Julien Chaumond and Clement Delangue and Anthony Moi and Pierric Cistac and Tim Rault and Rémi Louf and Morgan Funtowicz and Joe Davison and Sam Shleifer and Patrick von Platen and Clara Ma and Yacine Jernite and Julien Plu and Canwen Xu and Teven Le Scao and Sylvain Gugger and Mariama Drame and Quentin Lhoest and Alexander M. Rush",
|
537 |
+
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
|
538 |
+
month = oct,
|
539 |
+
year = "2020",
|
540 |
+
address = "Online",
|
541 |
+
publisher = "Association for Computational Linguistics",
|
542 |
+
url = "https://www.aclweb.org/anthology/2020.emnlp-demos.6",
|
543 |
+
pages = "38--45"
|
544 |
+
}
|
545 |
+
```
|
546 |
+
|
547 |
+
|
public/gpt-2/transformers-4.9.1.dist-info/RECORD
ADDED
@@ -0,0 +1,532 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers/__init__.py,sha256=vU0NfQd5SjZwkhl5ELrWBYcn5kVz59ShQOcm77qVOac,118787
|
2 |
+
transformers/activations.py,sha256=vdFvWTv26miTCn-ZK2Vx5h_st2TlM-8F2gHDCZskI34,3537
|
3 |
+
transformers/activations_tf.py,sha256=icsuyf137XXLTMUq0cTaJ50sPg0urhW5GcJYH37F4fM,2766
|
4 |
+
transformers/configuration_utils.py,sha256=CJV3_EbIMwKCrNNisbC3mpuHF_QG0TItf2Jl4h3BkxE,40373
|
5 |
+
transformers/convert_graph_to_onnx.py,sha256=lrCE1ar73gR8nEw4ehQUI3ZgrlvjoijmajPJ014Ef7Q,18640
|
6 |
+
transformers/convert_pytorch_checkpoint_to_tf2.py,sha256=bAyd-qCY8azDJU6DOen4V9sl7QYlirWheDDKoqm5EhI,16607
|
7 |
+
transformers/convert_slow_tokenizer.py,sha256=q_ApjpV94Hv2pkwg1RIRopZBlCgzyQussWu2dbUCbWs,29938
|
8 |
+
transformers/convert_slow_tokenizers_checkpoints_to_fast.py,sha256=DxQB-Ji8I0lZ4EUXBl0ucnoJxwE9rSp3IbfuyMbBxiQ,4955
|
9 |
+
transformers/convert_tf_hub_seq_to_seq_bert_to_pytorch.py,sha256=LHDZoAwfslnHT74gNbiW2GmYim89tPtKm4HQsxxyeck,2899
|
10 |
+
transformers/debug_utils.py,sha256=_CfKIueP-5q57XX7hg_kTcgPhttPWqDz93J-7mTZdzU,12950
|
11 |
+
transformers/deepspeed.py,sha256=x7DKIC0zS6kgM5rf0AF7czzAeOWR8C3Ocpsjq7IzbH8,17035
|
12 |
+
transformers/dependency_versions_check.py,sha256=z10phKu2S4bq0CeJrVa9PQbPdfpxnUTi-icmNpO0vFk,1772
|
13 |
+
transformers/dependency_versions_table.py,sha256=nHiPNJSveGek2KxiKaBEJkOVqP2-7IP6E0NMdCqex9w,2501
|
14 |
+
transformers/feature_extraction_sequence_utils.py,sha256=x-S2Emr2PNSDcc5FPKcuaFEOWx98CW3DFKUzaXhmkVM,15734
|
15 |
+
transformers/feature_extraction_utils.py,sha256=RjTc_QLUq0w-ojWrABguaam57hjGRuGA_ZSA7KgrBCQ,21973
|
16 |
+
transformers/file_utils.py,sha256=3aWh5UIRUKGQneeWy9U3y9VHDmjaLrzdF-1kxzh-suA,80956
|
17 |
+
transformers/generation_beam_search.py,sha256=XNk5Ffu5oL6CTa8ErpgfCWL7-oyhMX_C9DAUXnIX_Zw,17536
|
18 |
+
transformers/generation_flax_logits_process.py,sha256=Ou06C4Z4ZrVG5YNnmhAYKyxf3r-_9DCo_Dj5QRawAFQ,11805
|
19 |
+
transformers/generation_flax_utils.py,sha256=rrgQahkB3N9SBecjMdKmVpka05SVTZk6_W8AOmzeCYs,37887
|
20 |
+
transformers/generation_logits_process.py,sha256=S6U2CkBngnONw7uPtoTsJVBcHJmFwbnfFMsLBrgAYdY,26683
|
21 |
+
transformers/generation_stopping_criteria.py,sha256=CEYApRm9cbyufwAEoQPC4dCnVQwMJjl6ZFimBfuHgkU,5383
|
22 |
+
transformers/generation_tf_utils.py,sha256=XxEX2njlMeIIEQekyvGsTe-dqSrH-u4ZwdvOEoDBKV8,91769
|
23 |
+
transformers/generation_utils.py,sha256=qnlpMQv-LemDRgaUl9yToKtWLUa0dDQbo7bBXhOgO3U,143441
|
24 |
+
transformers/hf_api.py,sha256=hRt_F1SKUZIdXDg7Wc7PjyDJCi2iF2cRO9ixRatWxsg,7325
|
25 |
+
transformers/hf_argparser.py,sha256=wVVCpi6o9-Ygm159k3IWZQrl84Q7_lSy6MyOL3dXfU8,10711
|
26 |
+
transformers/image_utils.py,sha256=m_JcwpRK3o1pgrOCIOt02FTKhAjYI7sPA5hFtAeICp4,8871
|
27 |
+
transformers/integrations.py,sha256=8mSw7uUt7El0qFmFgvi0wSg_SzgxA1aH9nIv1mjBpzg,33602
|
28 |
+
transformers/modelcard.py,sha256=qq3Jh-rdPwgUU4JJo7F3Xcy2tpRE2yKIgEVv_y8D70k,29548
|
29 |
+
transformers/modeling_flax_outputs.py,sha256=C4zrBHH2jrACZE1PPPhlmitmO32Mw_DSkZobO9gr1wY,38385
|
30 |
+
transformers/modeling_flax_pytorch_utils.py,sha256=w99NEOcY4_yDwHj7IA0KIDoGOg7qIgKX7XCtufoIMd0,10482
|
31 |
+
transformers/modeling_flax_utils.py,sha256=TG-txCqARtkfG5ySJxtef95AzpiYH9mrysV4sJU7kUs,25432
|
32 |
+
transformers/modeling_outputs.py,sha256=6LzFctao2A01GNdEdJiq-9NrtnlCxldHFSThqjuMBnA,52392
|
33 |
+
transformers/modeling_tf_outputs.py,sha256=V_Zr7nvAqVs57_RSm6MaKus_o76QrSr8sTqYrgYFTaU,42017
|
34 |
+
transformers/modeling_tf_pytorch_utils.py,sha256=V8voosVTkPenT_5cjvvwdeC8dDeSMhbVGiA0nrWkZqk,17997
|
35 |
+
transformers/modeling_tf_utils.py,sha256=VpqGLJII3OFuu8DOMPthecSKU8r1K3xpsYs3qATApjw,77670
|
36 |
+
transformers/modeling_utils.py,sha256=hVKFvm8hUpirqIHzhQ3Py8FMN0LO1dLX9vXVGduHNHk,105294
|
37 |
+
transformers/optimization.py,sha256=0f2SCH0e5LoXONUtaj2QR0hdeWsbsBxDc6A2ILkSiRs,27375
|
38 |
+
transformers/optimization_tf.py,sha256=MgK90VS75nNh52PZ-ZA5IWPrgck6EF4zpdodQznZje4,15890
|
39 |
+
transformers/testing_utils.py,sha256=LsqU_0LCQ154iihKsiJo1dq2skfliDr_Ky8sp4Avk9Q,42795
|
40 |
+
transformers/tokenization_utils.py,sha256=2BiexNvdjmAZ0hWJKgPDOgxgT_NJLEjA_yb_KWZKVAk,32397
|
41 |
+
transformers/tokenization_utils_base.py,sha256=vHe0uSe9cSzG-Bfxje03kyPqXfV2Cs392Gkr79xyauc,165870
|
42 |
+
transformers/tokenization_utils_fast.py,sha256=KirTOghLX79mCCot9gvdGFw7b-COHO61mb1CR3xtWqY,32188
|
43 |
+
transformers/trainer.py,sha256=NKu22yK7RWvNiaLOuPdlaEE4Wa4OxmgiooA2VxlGmKE,126345
|
44 |
+
transformers/trainer_callback.py,sha256=irUebB5TtddePVIQuT6CuJKobhS-x8CgOwEVqU89amk,23488
|
45 |
+
transformers/trainer_pt_utils.py,sha256=65y5fH1FeqS0q1BCdOg6E3gHBjJoAS8hjaRUH49bAY4,44264
|
46 |
+
transformers/trainer_seq2seq.py,sha256=-2ITs8ibbKrGJCDBAiCF4BX1aqWYafqsjsT7GCS9p1k,9744
|
47 |
+
transformers/trainer_tf.py,sha256=ABdmYj9pYdrYwfC5IOrP5L7rKTPM1kvMaqg2TZcUHoI,34959
|
48 |
+
transformers/trainer_utils.py,sha256=-tLuHESLRZ3H5Npwv3AdcfWZM_vGlG_NPf6ngNdiPrw,15414
|
49 |
+
transformers/training_args.py,sha256=DN3CkrvEiIX1r5aKeVkgGqSxH79mi1Ja93XKE9jrlBM,57088
|
50 |
+
transformers/training_args_seq2seq.py,sha256=mHau-QBp-b0NMBRraU2MOS7ibQSF2YoL0iuuow4eM2o,1754
|
51 |
+
transformers/training_args_tf.py,sha256=4cBb-HvWkqclWDxHGUnYOTMwPNK6RjJioxz2JmOx2nE,14909
|
52 |
+
transformers/benchmark/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
53 |
+
transformers/benchmark/benchmark.py,sha256=j4iQWOlkmPKSgGF7ItFhI78VEkXKCyBJ1nKcDUng2A8,10613
|
54 |
+
transformers/benchmark/benchmark_args.py,sha256=TSaQ9z4kIOX27VzbFco7OGzdt0y2Rze7qgMj8oDrWFM,3777
|
55 |
+
transformers/benchmark/benchmark_args_tf.py,sha256=r84A8jMUserwHmuQc9hgfhh6zJMRagUhsdwHdFJ8a1I,4573
|
56 |
+
transformers/benchmark/benchmark_args_utils.py,sha256=bKmk1DYEXSVVCpqbcFuB6XeR_rcD_2joXSqkpVTHSc4,5895
|
57 |
+
transformers/benchmark/benchmark_tf.py,sha256=QHrBfRItUfCbjK8vWLbeovE1bzSHVFb1nau_FiBR_dk,12924
|
58 |
+
transformers/benchmark/benchmark_utils.py,sha256=3241wr2_bK1dHzw_-151XepeJl274YEwpOyE3Ewz_RY,37265
|
59 |
+
transformers/commands/__init__.py,sha256=aFO3I7C6G9OLA9JZSc_yMaZl0glOQtjNPjqMFfu9wfQ,923
|
60 |
+
transformers/commands/add_new_model.py,sha256=QufphyzDMFkiZODBe7_7XWSSUF5AmnSEjKYCVxGXErU,9393
|
61 |
+
transformers/commands/convert.py,sha256=r94i7Y3UgdhvC7SvJ2hFBgEro8jlKku3r7QJWlWOHqw,7555
|
62 |
+
transformers/commands/download.py,sha256=LgjPfIvyS4T_CUWyaEfTdzm70ukcmE088XcARc98SKc,1860
|
63 |
+
transformers/commands/env.py,sha256=F3CmAIc2zMGV7JYr1NW0ZMXHxkzMXj_YVRXOx8uq43I,3223
|
64 |
+
transformers/commands/lfs.py,sha256=MZtTExjpnzTH1WKBqnVzCharnagHYT990LLw7bfDf9g,7951
|
65 |
+
transformers/commands/run.py,sha256=YmVnwcl3ECHAGpJG8YnG-t1-SH1triqwkvydAllCvTI,4316
|
66 |
+
transformers/commands/serving.py,sha256=UqPfTf7ptECNO6Sbkz-0o6_jNgdXC-IWv7I5BqkbneU,8088
|
67 |
+
transformers/commands/train.py,sha256=ci3PIPifxzAPVuNrEo6V2CtFU8Can1lNLc0jsP7UkSA,6371
|
68 |
+
transformers/commands/transformers_cli.py,sha256=3SbLbWHB7YD5yAFlkiVPv7y2i2SD59ouQn132C_47uU,1837
|
69 |
+
transformers/commands/user.py,sha256=tSTrVFHnXH_OkjExNe9CK-Qs1LDtS-UdIM3rXb0XXSQ,15582
|
70 |
+
transformers/data/__init__.py,sha256=R-RTJ0SCSk2tAZmM7uiB_EeDrgMVfg0GxVkKIU58ikk,1271
|
71 |
+
transformers/data/data_collator.py,sha256=fwvMWLGVLOtvdSY-ttZxDqMZtSg-Taxyfwdf2e_gxJ0,36353
|
72 |
+
transformers/data/test_generation_utils.py,sha256=mImkKgzBwIyM4YyYU43EI_33giCE7RFOdx0AXyrrxIg,3438
|
73 |
+
transformers/data/datasets/__init__.py,sha256=w6nfIPWoQNrf9dn1fVK9WQGm2eHtZOw2HOKSACbWNlk,1080
|
74 |
+
transformers/data/datasets/glue.py,sha256=yBT_ZxcLJ8qP89OFYKG57kX6eXc13DVXLDBtahJhy0M,6139
|
75 |
+
transformers/data/datasets/language_modeling.py,sha256=dSA2_W4SL5PpzU6zREOZgpPkrFmlF6r0SRghRl6U0Tc,22637
|
76 |
+
transformers/data/datasets/squad.py,sha256=hZC70ZAtBVd7LsZMV11cFfcT7mkMTaqNu5DobraZEy0,9042
|
77 |
+
transformers/data/metrics/__init__.py,sha256=vn0Ia7TaHRC7uSF-trNGueJbh5QqbbtxwUagTPk4_ro,3783
|
78 |
+
transformers/data/metrics/squad_metrics.py,sha256=CtGdGGEKIweyyuwQw2NRwvNHIWwoKsHsuW9rTunwIXg,29617
|
79 |
+
transformers/data/processors/__init__.py,sha256=4AxJWnnlohFY0fgJ3f24tP3lQ4t4Z5ks9WypFH7F9Fk,1185
|
80 |
+
transformers/data/processors/glue.py,sha256=xmDyK07tmoc5Lwg3pivCTdLD8TKws4JoKCuBcYo1wIY,23289
|
81 |
+
transformers/data/processors/squad.py,sha256=5nQEqW043AvF8HdrIEAYy_SkpUOcuZY64C-8jds_hPY,33283
|
82 |
+
transformers/data/processors/utils.py,sha256=4dbyHPQIFX8x0O76xn-DtevfRFZcwo2nuqNBd_mh_nw,13833
|
83 |
+
transformers/data/processors/xnli.py,sha256=eylu-SFA0gn7ZIv7Rp1Eu8vdqai3RLFxysNiHAr45pc,3290
|
84 |
+
transformers/models/__init__.py,sha256=2U9ggegZWChHQep_GQ7VjH32nvO13epoj4HowfPD7uM,1656
|
85 |
+
transformers/models/albert/__init__.py,sha256=8J8D7gJk-iSbof8u9HqWk9BZ7vZ7st2aUW3M5WlFDsw,3549
|
86 |
+
transformers/models/albert/configuration_albert.py,sha256=xd3H4FpdoYn4jo2VC3EROrbnzzgsoe0F5BWkcUj63bA,8984
|
87 |
+
transformers/models/albert/convert_albert_original_tf_checkpoint_to_pytorch.py,sha256=OLAsUH7e5hPQz68AbPqy_ZJm8QzueEYX15nk1YAbZCE,2155
|
88 |
+
transformers/models/albert/modeling_albert.py,sha256=ARYj-1vw4Vxr5_nL_fGxhCk2ZH-t0ViEv86gfOiZwBc,56453
|
89 |
+
transformers/models/albert/modeling_tf_albert.py,sha256=9es_iwVUVYEeQnymF4E3rzeJNP9afxcBV8Rm5C62TiQ,70275
|
90 |
+
transformers/models/albert/tokenization_albert.py,sha256=3BUdj8cApmJ3jzVGxTt6MaDmKEXJ65hlTPQsKpb2iok,14513
|
91 |
+
transformers/models/albert/tokenization_albert_fast.py,sha256=So4k2K_m_fSBvHf193o3bngbI_YszSkd4tQPIsnhpEI,10552
|
92 |
+
transformers/models/auto/__init__.py,sha256=UUszNWq7T1ls17EfOIzs9JYuJ5q34q55goKAFgtE2nw,8313
|
93 |
+
transformers/models/auto/auto_factory.py,sha256=ARmNHJ4ZD5vn5qxohsJMQq-6QKeQGzA0HN5ZpQ7-jlc,27603
|
94 |
+
transformers/models/auto/configuration_auto.py,sha256=82bx143ABrTfxZt1YMi9KUmnvc9InD2Ii2mwnmifJg4,22776
|
95 |
+
transformers/models/auto/feature_extraction_auto.py,sha256=FnJyoBpHdHh_PclNLvkWEFy9oRhtKx6rw1DNKv4JFG8,8260
|
96 |
+
transformers/models/auto/modeling_auto.py,sha256=y2k6_ZzfCGVtF7WTIDSxjB5GlX0bvY1YdTst2He49t8,33274
|
97 |
+
transformers/models/auto/modeling_flax_auto.py,sha256=HFSU-_kxLAmIshTP5up2_28vJYtz0HmjQWNyntHDFuk,9806
|
98 |
+
transformers/models/auto/modeling_tf_auto.py,sha256=-rn0-ulsFfMPcawLmfvexAUAI2oVXDrQBiJ1SD5qRPM,21745
|
99 |
+
transformers/models/auto/tokenization_auto.py,sha256=893OMQv9bzbmFFXHeNK7iUtN2naYytBs4sib-huNEkA,27427
|
100 |
+
transformers/models/bart/__init__.py,sha256=kziWliIcT1VPlGoReqFgTCD2pGvWjm1pF8ymu85ff7g,3116
|
101 |
+
transformers/models/bart/configuration_bart.py,sha256=n3P_Y82l7rA_AoCVr-Cahpzk3rrYtvYOQ3qt_ScbBeQ,10106
|
102 |
+
transformers/models/bart/convert_bart_original_pytorch_checkpoint_to_pytorch.py,sha256=UbkbQ6_JRDqbMtk8kmwQ8LEX87fU_SxlyBDQCgrHNiI,5647
|
103 |
+
transformers/models/bart/modeling_bart.py,sha256=URn7nSgmP_CO97TsAIGpIZY6nlp8WT1ztcGGV12J5ns,83415
|
104 |
+
transformers/models/bart/modeling_flax_bart.py,sha256=VaMyYVSZn3fQHL30R2AmHRJ_aHZTKuCZBr1Q7n7xCCg,72353
|
105 |
+
transformers/models/bart/modeling_tf_bart.py,sha256=VC8LdpMVrh1mTeFM6qP3F6OD0ePhutCfkTykn_GE6rA,70569
|
106 |
+
transformers/models/bart/tokenization_bart.py,sha256=ewxV_QGr2VyJWyp3Qv4kV9GsnUiQnDvKyyrrHYgM5yg,3052
|
107 |
+
transformers/models/bart/tokenization_bart_fast.py,sha256=0PVvHIXOWMNfm-g2os7cjqTgFHvaVVDq45tGe-QrDtE,3942
|
108 |
+
transformers/models/barthez/__init__.py,sha256=-Fop4WQ7FLyBfQGhrDDJIj-DFCAyv83c-REkQXu0rrw,1475
|
109 |
+
transformers/models/barthez/tokenization_barthez.py,sha256=TtTltDUxNczCa9FnxDhaQYvGCKRpITpHd6UozYzrwZc,12497
|
110 |
+
transformers/models/barthez/tokenization_barthez_fast.py,sha256=yaxGNyt1hoKE8FnzG2tchLH7t-vVAhXFQfZg5QIEv1A,8748
|
111 |
+
transformers/models/bert/__init__.py,sha256=d7A-FZGgSOznzjFcvizRU80_75QJDW0fIvPXM4VcYQE,4611
|
112 |
+
transformers/models/bert/configuration_bert.py,sha256=uPrjdZZIHo3JFY9_qvfBjHbt-TiGbl7IYHqjAymLoVI,10322
|
113 |
+
transformers/models/bert/convert_bert_original_tf2_checkpoint_to_pytorch.py,sha256=PR3miUETPZEBnT5Q9alOijwT-iOifcR2rJXXhtN7u98,10253
|
114 |
+
transformers/models/bert/convert_bert_original_tf_checkpoint_to_pytorch.py,sha256=NjnB6Ux0mnn_D7WeDBkNiMqEr2LYYztU8eByGVQBEec,2131
|
115 |
+
transformers/models/bert/convert_bert_pytorch_checkpoint_to_original_tf.py,sha256=rOZ4Af0a3lEGdCR5ikswI67O2BcDnfL5eTtrXMk5jNw,4101
|
116 |
+
transformers/models/bert/modeling_bert.py,sha256=zdPoyaaa0lLc5tFiLdQs4w33IHnp-gCZQO_xi2LaymY,78800
|
117 |
+
transformers/models/bert/modeling_flax_bert.py,sha256=_XICp_qYmG2Wz_f0hiuBvwscNaW0eTkN3JpFzDxXiLs,42177
|
118 |
+
transformers/models/bert/modeling_tf_bert.py,sha256=cjF7Vbutv27RhPApThPJWXVB4SyaYbedY7_p-cz8HjE,82409
|
119 |
+
transformers/models/bert/tokenization_bert.py,sha256=SIMJJZ5eDquFAQjM-TUk33tCYCkBDgoBYMfOJ1D9kxQ,24552
|
120 |
+
transformers/models/bert/tokenization_bert_fast.py,sha256=y7tT0ngXQFhiPPWOwPYJWia4qW2VAJZJXBCdSnepGUE,14323
|
121 |
+
transformers/models/bert_generation/__init__.py,sha256=6y5LOb5FgJeEZLQx8GFVa66qjddp1qnx9f_8Vft0sDA,1908
|
122 |
+
transformers/models/bert_generation/configuration_bert_generation.py,sha256=QurVdo80hLC3Z4saVEjvTbfrNC4iNi6RDML8_Nss6BM,6324
|
123 |
+
transformers/models/bert_generation/modeling_bert_generation.py,sha256=WpIHBzssvF-an19oeHIhfa4FwXP00-j-cw44gZVRYf0,27566
|
124 |
+
transformers/models/bert_generation/tokenization_bert_generation.py,sha256=-nazgr01l2RabK2d9lUKzzqRQmeFx-i7aUeri9jtqDM,6513
|
125 |
+
transformers/models/bert_japanese/__init__.py,sha256=bxBT0C99Sf-kvvEMjBjN6J5SGsMIMKImFYzgMqPNurA,1214
|
126 |
+
transformers/models/bert_japanese/tokenization_bert_japanese.py,sha256=nO4woRqHo6xg4ClhpfI54JqDb6Fo983S2WJxmxYZVdI,13227
|
127 |
+
transformers/models/bertweet/__init__.py,sha256=FOpFC4vt8uqAtPfvKd5wTL2BBlmW4QmMgSayprpNvw4,1120
|
128 |
+
transformers/models/bertweet/tokenization_bertweet.py,sha256=iyvCaH0gW0PzSdg1WlPlvauj7Z74Vmkc3uFjZdbX8HE,27394
|
129 |
+
transformers/models/big_bird/__init__.py,sha256=nBBqD92FXQey1n0bharIf2VFM_u3fJTsVbKmrxSV_gQ,3590
|
130 |
+
transformers/models/big_bird/configuration_big_bird.py,sha256=GcbvK1Axpt2rwR2eDcjoRR2dDQcJB96GlcP7fwjXlOs,8037
|
131 |
+
transformers/models/big_bird/convert_bigbird_original_tf_checkpoint_to_pytorch.py,sha256=3dCKKeSoJK72D6YWYLL07MNSt4jmHygu0De249VWt5I,2466
|
132 |
+
transformers/models/big_bird/modeling_big_bird.py,sha256=5IwxsjkyanY8YsTJTcjCYoQ18Qo905QEPNv1uuV4gWE,135005
|
133 |
+
transformers/models/big_bird/modeling_flax_big_bird.py,sha256=RqxVMq35mC-kMgpM2gvncpFWG40Ab37USDGEg8qVUhY,85524
|
134 |
+
transformers/models/big_bird/tokenization_big_bird.py,sha256=e7TugIGmPO_cZP2sH0LTgFlPbA-CoWl5nYO42O43JOU,12261
|
135 |
+
transformers/models/big_bird/tokenization_big_bird_fast.py,sha256=s0n6bRd90Zwx3o29DLw7IGZdA3Ws3DF2oFd1qwTiScM,11146
|
136 |
+
transformers/models/bigbird_pegasus/__init__.py,sha256=vkNAvxkXV4vXQP5_wk2WqVIO0ENBBuyq0SgrvxXNKkk,2072
|
137 |
+
transformers/models/bigbird_pegasus/configuration_bigbird_pegasus.py,sha256=mCJhSplCvne8ll8SuyhOmW4cxDoNq3wt4UYoWLNUCyk,9748
|
138 |
+
transformers/models/bigbird_pegasus/convert_bigbird_pegasus_tf_to_pytorch.py,sha256=CsoYYIaepYmhoG7r3tQKlRsXKfKUc0pxzciN0hwxysU,6295
|
139 |
+
transformers/models/bigbird_pegasus/modeling_bigbird_pegasus.py,sha256=7rQJxMwPxpOYtcQ5Ay2i56S7n1SUU-mTskJMiBRLRls,142054
|
140 |
+
transformers/models/blenderbot/__init__.py,sha256=kmjdtkZ-eCkAdCZafgksddC86P1GVNs3ix5OT6AH9tY,2331
|
141 |
+
transformers/models/blenderbot/configuration_blenderbot.py,sha256=QzkhuNUkB1Hl4bf19QIu-tutw39fqUZlLDJYaXvhwZU,8590
|
142 |
+
transformers/models/blenderbot/convert_blenderbot_original_pytorch_checkpoint_to_pytorch.py,sha256=bqHKTaU9P7BUedAtCHYeT_NaFxg4EpkEDgzNWX23Jcs,3678
|
143 |
+
transformers/models/blenderbot/modeling_blenderbot.py,sha256=cLkly7g8Ia8w5iF99txrXO4o5on19frzEBVeU1tIKvA,74735
|
144 |
+
transformers/models/blenderbot/modeling_tf_blenderbot.py,sha256=ucbzVV9XZFli4JdEEA3O5IbIguhAQGgR9lbkzk2S6kg,73218
|
145 |
+
transformers/models/blenderbot/tokenization_blenderbot.py,sha256=bezI1HOBQDD4iQeZQwSI3RhXxZsL0fiRq07hvhdRFoE,4134
|
146 |
+
transformers/models/blenderbot_small/__init__.py,sha256=0fA-n-rY7xRq3nV5gzJJc1aQ13-ySQ454M2o9NYzY3E,2490
|
147 |
+
transformers/models/blenderbot_small/configuration_blenderbot_small.py,sha256=bKICjyWf07HkDLAN-Ah3XAk9XY8EB4EgW9AeLV5Ga2Y,8603
|
148 |
+
transformers/models/blenderbot_small/modeling_blenderbot_small.py,sha256=LiM49wsZbeK8zZX-Ihk6aqOsAnUM3FjGhZR9Hpw7wRo,73753
|
149 |
+
transformers/models/blenderbot_small/modeling_tf_blenderbot_small.py,sha256=8dmNwSSqG4uzrn_H-ze9CUm8-bPYEhx6AosSxpOwR6w,72131
|
150 |
+
transformers/models/blenderbot_small/tokenization_blenderbot_small.py,sha256=qubiFN1ZlIXVyJvItd_iBWLKztbn9P_lcXf9aRsQCFs,8679
|
151 |
+
transformers/models/blenderbot_small/tokenization_blenderbot_small_fast.py,sha256=nxmEHs9hgXc6SDNcNAUKtxiqMTmj-XeRPszEQWj-nCg,4063
|
152 |
+
transformers/models/byt5/__init__.py,sha256=Xtl2luQjzz0YllzgMvN-BKJBZGu20I1gxi6J0nMthSM,1103
|
153 |
+
transformers/models/byt5/convert_byt5_original_tf_checkpoint_to_pytorch.py,sha256=hTwfWSLeVT9i8l8lRQ9ofEv2ntGTvgfM0UVZsA3LvCk,2107
|
154 |
+
transformers/models/byt5/tokenization_byt5.py,sha256=o253pYWQAurF4JILp1-LRv5MNdylhOwA4VjpUsECdKE,11475
|
155 |
+
transformers/models/camembert/__init__.py,sha256=tFcuCF1aPIwwVmOJuEpu3fNDLetaeFJwaC43vZ_yjWw,3303
|
156 |
+
transformers/models/camembert/configuration_camembert.py,sha256=lxDxh3c6h8jpiCLHOmqupFvxGL7Ej35j4iXBvUgRMss,1499
|
157 |
+
transformers/models/camembert/modeling_camembert.py,sha256=MC24--K-qW-h2axQwIgVuoY0dXmM__8RZFV-0Ew60_A,5734
|
158 |
+
transformers/models/camembert/modeling_tf_camembert.py,sha256=6ho5nuIm0L9WyYfXKTbhjd-2gEJyVFwr-X_U3bnwQAg,6327
|
159 |
+
transformers/models/camembert/tokenization_camembert.py,sha256=P8-3XFuCXN6jriYkaroGg3ssQ8bCX4tTLV72GqDGHsA,12909
|
160 |
+
transformers/models/camembert/tokenization_camembert_fast.py,sha256=nr3MwkEiXXLDvRY9CVgX_xg8PTZrEcupq9V6deBvxwg,8554
|
161 |
+
transformers/models/canine/__init__.py,sha256=XUHB8nqcjQFzXG7mJn2qd-e7EHFZgJNdglslflPzJ3s,2146
|
162 |
+
transformers/models/canine/configuration_canine.py,sha256=AjkfV7-g1vU6qM15bcJaP6t4j5NM-UgMkUZDaj-yzvA,6959
|
163 |
+
transformers/models/canine/convert_canine_original_tf_checkpoint_to_pytorch.py,sha256=nydwXeyOU3vbMxHgqj14ln-VJFOfH4FZG_stSDUa5Y4,2118
|
164 |
+
transformers/models/canine/modeling_canine.py,sha256=B9o_ZzAZ9A1eJe71lAfMTxKxoO2GNF6F0__-5hU4uao,70648
|
165 |
+
transformers/models/canine/tokenization_canine.py,sha256=_Ie4bEc7IK_T6u4Fz-xHN7TPzKQXD6eVr8vg-XXnpPQ,9435
|
166 |
+
transformers/models/clip/__init__.py,sha256=wTM_SED5cW4Db4qkxhLX4yTUASrRaLfDbkwZ2m76Ygw,2995
|
167 |
+
transformers/models/clip/configuration_clip.py,sha256=TR3ESQgB7V43kZykmfDOzFH_luAm7cHgBH6WAWFiYpQ,13419
|
168 |
+
transformers/models/clip/convert_clip_original_pytorch_to_hf.py,sha256=QaPBO8oTgNDalO0YCXNnHSnMb0c28fhGX8bN9KtKQTc,5234
|
169 |
+
transformers/models/clip/feature_extraction_clip.py,sha256=7IuoTT-PVpu3oc2hwveQVK4MG-u4qLX8zT3z3lRIxM0,9548
|
170 |
+
transformers/models/clip/modeling_clip.py,sha256=Z5W53P8Gz5QKGH9_35J2Fvojjve3wkhSvFSU3rtoH_s,43692
|
171 |
+
transformers/models/clip/modeling_flax_clip.py,sha256=Gm9XCedk4EzS7h6X9a1r4QKnonlmA2PwFPtzl7hlzMs,44715
|
172 |
+
transformers/models/clip/processing_clip.py,sha256=wLI74ICxPbxZtTMYjgEVNh7zt7H_sSLKURhtFu10myA,9021
|
173 |
+
transformers/models/clip/tokenization_clip.py,sha256=Ex035V_am2Od91DLW4d30L0EDJz6rK3M2Ooj937jDLI,14668
|
174 |
+
transformers/models/clip/tokenization_clip_fast.py,sha256=SxAsstgsSsl7KVrGCV-gP0p-C1YOxK5e0nka_lbrITg,7022
|
175 |
+
transformers/models/convbert/__init__.py,sha256=RYoeKe0hTIWveA757hwUPKHFk3FqyFgt6pQBlGM_TC8,3380
|
176 |
+
transformers/models/convbert/configuration_convbert.py,sha256=RZKc_3ITMqU77hq5IEpRhjy1khdp8sQWrtxOMF_94M8,6767
|
177 |
+
transformers/models/convbert/convert_convbert_original_tf1_checkpoint_to_pytorch_and_tf2.py,sha256=2j1QS0SBJPf1EA5Vulhre8iOvQ7nmFP-Dp6LsjVwwaE,2080
|
178 |
+
transformers/models/convbert/modeling_convbert.py,sha256=F0hdazX8I4hSlWRqf1zt4olSWr6gx-XRgtkCcEmLsf8,54697
|
179 |
+
transformers/models/convbert/modeling_tf_convbert.py,sha256=a_BCLiwT0Y1BgW9cGj5x3-JN6KU_M2iRoAU6LyljHEQ,58768
|
180 |
+
transformers/models/convbert/tokenization_convbert.py,sha256=E82NNDbKn2FwLyqu90wRFPbPQItz7bDPr1q8oGuottc,2216
|
181 |
+
transformers/models/convbert/tokenization_convbert_fast.py,sha256=3az76x_YtwSONZ973wqgCamLlsj3EXCHpECRIj1IG7w,2422
|
182 |
+
transformers/models/cpm/__init__.py,sha256=HRqcN66_579HtzB_p3CwyXvIK10ITOR02uIOyAUlns8,1100
|
183 |
+
transformers/models/cpm/tokenization_cpm.py,sha256=NDEa4PkPAjiHy1QcMMMcbbz1yIGBhGOZx9WrOY6rk-8,5653
|
184 |
+
transformers/models/ctrl/__init__.py,sha256=er5JdEvoPH-K--lojvel37JyzW0MAnX42JXDtLkKe24,2314
|
185 |
+
transformers/models/ctrl/configuration_ctrl.py,sha256=OQ-uZbfb-efDW_4F7oxKoL2ZFBMQfnN2fvWBJlmoXKA,5824
|
186 |
+
transformers/models/ctrl/modeling_ctrl.py,sha256=GjgrYEC29q-LJeABfjMyldJIRaK_J7DLSnBVGRQsScY,29015
|
187 |
+
transformers/models/ctrl/modeling_tf_ctrl.py,sha256=KMVavid4roBqwlBmDHJZSySGYHGaBzGdUgoX4DIDHlU,38193
|
188 |
+
transformers/models/ctrl/tokenization_ctrl.py,sha256=Gb1ogxdYT--TsNG8TIC0WGHsMtC4WgORO95XlBNIQOk,8504
|
189 |
+
transformers/models/deberta/__init__.py,sha256=ykQQ5_ilRz6rF1Au791TfvaqAp_1WGKa_Rzp1ACJeaE,2248
|
190 |
+
transformers/models/deberta/configuration_deberta.py,sha256=SNaXOHs1A9bo7r9_CBLpK-P55LTTVTdsDyQXMg3bZ6s,7628
|
191 |
+
transformers/models/deberta/modeling_deberta.py,sha256=0PslO1AjaiZzyx-C2pjT6fBieNWX6qQF0A88tgAKKYM,54099
|
192 |
+
transformers/models/deberta/tokenization_deberta.py,sha256=BsnRgwkYatUjm6lYrWW9mLmswkzV0zcgXP2Ll6o0T_I,10346
|
193 |
+
transformers/models/deberta/tokenization_deberta_fast.py,sha256=93HIVR1ZY9dRkC1OHQ1pDcTss34hsWDWIVvFDmRVtFk,9082
|
194 |
+
transformers/models/deberta_v2/__init__.py,sha256=2pwZbM4XA1xWqLJ9viVBmN3aqEic3efXcrmfxEYoomo,2073
|
195 |
+
transformers/models/deberta_v2/configuration_deberta_v2.py,sha256=qisVQyP_Wsx49WpXt-UPHwXEqKFT1Bh79iE2-yN7hxw,7372
|
196 |
+
transformers/models/deberta_v2/modeling_deberta_v2.py,sha256=jA3LJ1sh20Hb0ZoU-adVCbXku1QWYfq93legg3Yngo0,60591
|
197 |
+
transformers/models/deberta_v2/tokenization_deberta_v2.py,sha256=lEmSxZFxI2s3qNgT09mKp0a3PgBfgy_eWGmzjKT7HaQ,21489
|
198 |
+
transformers/models/deit/__init__.py,sha256=h34d4WRVvUcH2P48HWG0uK90tT9MOAR_ptYhBcw39q4,1947
|
199 |
+
transformers/models/deit/configuration_deit.py,sha256=q3SAkwL3APVQFG_58Q1TX8ldPkzciuiCAI-H4AOBu3U,5379
|
200 |
+
transformers/models/deit/convert_deit_timm_to_pytorch.py,sha256=L0oFx6LYxnMBLFW8McGKewqqGBXTGnoUShOm9yz7DGs,9000
|
201 |
+
transformers/models/deit/feature_extraction_deit.py,sha256=yc9q5mvGCpU1R1LZUnMoFdxM-JksHuODdGybZzD8kHU,7516
|
202 |
+
transformers/models/deit/modeling_deit.py,sha256=yWg5X3MLBWc0M0_VqVnXkGH-8Vvdwsi-mE3QRJYSfoQ,31573
|
203 |
+
transformers/models/detr/__init__.py,sha256=uLBDFKtezCM2UvNElWLhXTW2TpreaFR-tlQfIfeb0Kk,1900
|
204 |
+
transformers/models/detr/configuration_detr.py,sha256=GLD9JB5MpJzMJUDA0DOFu615xylVw34rtHNdynF2bU8,9986
|
205 |
+
transformers/models/detr/convert_detr_original_pytorch_checkpoint_to_pytorch.py,sha256=706Uraj_6meBTiNfJHHEcYfCHcSDzAYikQFI4glZRck,13304
|
206 |
+
transformers/models/detr/feature_extraction_detr.py,sha256=9zFrx7n3F_rDdK5AmINkcgr3CpR0HH8fLlZAaKTlt0Q,40828
|
207 |
+
transformers/models/detr/modeling_detr.py,sha256=vL7kL7UlmhqNZhjtyuIEvNjXy8HeV5Qj1XySNLcoUA0,107836
|
208 |
+
transformers/models/dialogpt/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
209 |
+
transformers/models/dialogpt/convert_dialogpt_original_pytorch_checkpoint_to_pytorch.py,sha256=7yVhPLmBPKPzH8DjJC76cc7b8LgMGF2ldBmYjxXBMRE,1542
|
210 |
+
transformers/models/distilbert/__init__.py,sha256=407Gmi_b1whR5xHLA2WFAmDxN7ZpAxIMEd-U7D-DWNs,3469
|
211 |
+
transformers/models/distilbert/configuration_distilbert.py,sha256=_l2dKOO0QsvZ4Ke_iA0tga_4XjYWKGhqNjgyIQkKzYw,7276
|
212 |
+
transformers/models/distilbert/modeling_distilbert.py,sha256=1OJuy34hXoX95KpaujrJpxUE4dMfLAcNuDjkUad3WzA,39882
|
213 |
+
transformers/models/distilbert/modeling_tf_distilbert.py,sha256=MLW7nCQepM678t35_-HHxqwfqn16X654HTtNAeshE1E,49790
|
214 |
+
transformers/models/distilbert/tokenization_distilbert.py,sha256=d8Z9iefTiTEsbwnr9XItqzskfEEnnOAB_-AOa4kzYp4,3035
|
215 |
+
transformers/models/distilbert/tokenization_distilbert_fast.py,sha256=-KNiynUuBa_5hdkygpqjs_k4vJvTvIWSjF-yGcw1ycc,4056
|
216 |
+
transformers/models/dpr/__init__.py,sha256=RsOLAw138qc1-FoQNdZL_NPWD6klnMycywm33PfLPkk,3826
|
217 |
+
transformers/models/dpr/configuration_dpr.py,sha256=MRADjsuWRpGZYTKiSTIFnBVSmrVJK-08Ma_RQ5_6OpM,6939
|
218 |
+
transformers/models/dpr/convert_dpr_original_checkpoint_to_pytorch.py,sha256=5qPWZSb44QhFzOySnfcBuT3K1V1-ZH8klukzxSuXcrQ,6043
|
219 |
+
transformers/models/dpr/modeling_dpr.py,sha256=KsQHIsHKogsG0yiT2TV11SSzME00P9ofmJF0sIwlAY8,28713
|
220 |
+
transformers/models/dpr/modeling_tf_dpr.py,sha256=VOIN8gaPjr2mYn1Cp0u8S-yhRtuY8TYmkHofjbEU-Hs,37860
|
221 |
+
transformers/models/dpr/tokenization_dpr.py,sha256=RZV9ZkZ9ryZ0VowJ5HiI2olJ24m76XaJtlo0F-0l6KM,20037
|
222 |
+
transformers/models/dpr/tokenization_dpr_fast.py,sha256=aCFb2XO0ckV7VcRVQcDNU9NB5BmxBqnkdVEDlSluRIc,20519
|
223 |
+
transformers/models/electra/__init__.py,sha256=aVSQVDWB1QMIrEkdfcoBYT8_tKiU687gvDu0F1dvs-Y,4186
|
224 |
+
transformers/models/electra/configuration_electra.py,sha256=76U1cLSNqzsvCjddyw85NzZxm2uOvJTMr_7NoJ86AI0,9202
|
225 |
+
transformers/models/electra/convert_electra_original_tf_checkpoint_to_pytorch.py,sha256=MOEFIHFKfG2WxwXM0TMQl7AmiSf5U7NPL-vVbFIyABs,2845
|
226 |
+
transformers/models/electra/modeling_electra.py,sha256=r1cwGcYqkPRW4r9-2S6WpACBP32RMsDFW7pg8POD4dI,61975
|
227 |
+
transformers/models/electra/modeling_flax_electra.py,sha256=s84SC1_aVLzNue5qpjL_arK4gmBvKf5KLP8ltiBAUXE,42701
|
228 |
+
transformers/models/electra/modeling_tf_electra.py,sha256=anOcNiG9waHqTLujFkyBg-xQwV-lJ9nKkD63It6JTBk,63334
|
229 |
+
transformers/models/electra/tokenization_electra.py,sha256=rb3nAbMxmJyq-cb44Ca-rCCeXPeIjSd3jO0WFZsK83g,2932
|
230 |
+
transformers/models/electra/tokenization_electra_fast.py,sha256=ophZMO96tYRDSwLutR-o5TULc0k8FWMF0k5EZVx99Co,3958
|
231 |
+
transformers/models/encoder_decoder/__init__.py,sha256=s_wPAF0AY_XJNDiI5bDmFd0S96wmxbYomZG27Odf_PM,1360
|
232 |
+
transformers/models/encoder_decoder/configuration_encoder_decoder.py,sha256=4p5_bAUE0Et_mbmPr2aDjJ3KTFum68DZ04fIyubvSlE,5040
|
233 |
+
transformers/models/encoder_decoder/modeling_encoder_decoder.py,sha256=kLGt2RE1ceRrjOdaNxkzK6MGCpC1NZnw3SysCDaqIs0,26150
|
234 |
+
transformers/models/flaubert/__init__.py,sha256=kJtlXCOOIlakrMxWr9hVFvxPSoIG6g_9Ir5Bqgitohc,3000
|
235 |
+
transformers/models/flaubert/configuration_flaubert.py,sha256=NC4Z-6_1POjLFq56ZraXbsugMF6gg_Mk614X6ER8CSQ,8932
|
236 |
+
transformers/models/flaubert/modeling_flaubert.py,sha256=szgNid8rpx23BW-AckFZIxh5iIrseLSuO1qIMhcX88s,17590
|
237 |
+
transformers/models/flaubert/modeling_tf_flaubert.py,sha256=QxxE7CFiHErUaND9YQA0y1EjeCwagQmtEjcrs4FVZc0,40272
|
238 |
+
transformers/models/flaubert/tokenization_flaubert.py,sha256=AclXmXd5bo932ikHjE3SMx3O8XdwizDROutYNXOUkOc,5634
|
239 |
+
transformers/models/fsmt/__init__.py,sha256=n-FV1sHqqhsYDfSunvpB01kVbctRQ15oqxfVk290vz0,1549
|
240 |
+
transformers/models/fsmt/configuration_fsmt.py,sha256=WgzZf_tLEyZc2DChFcI3i9QtZE6nUECicDzbulIUyCg,10332
|
241 |
+
transformers/models/fsmt/convert_fsmt_original_pytorch_checkpoint_to_pytorch.py,sha256=1BmcjXkhypX_wZJA-ioao5V4MFGkSFjw89IQWTWt224,11261
|
242 |
+
transformers/models/fsmt/modeling_fsmt.py,sha256=oEpqmehcGXmfwlI9zbIUom-P80OeQ0bBpWPKRv5ktQo,53914
|
243 |
+
transformers/models/fsmt/tokenization_fsmt.py,sha256=2jqQC7bm8xkl20Zr_1VWzO2flXRgFMmRAqn8ULf3KF0,19528
|
244 |
+
transformers/models/funnel/__init__.py,sha256=cKF9oId3IFbf3jZTnvaRTfoHjQx2jo6m76X8UUFyW78,3479
|
245 |
+
transformers/models/funnel/configuration_funnel.py,sha256=9IfjsdHuM7BfYqV5KNV3e7O1aiAMkpJ_OvZ7QPywRJk,9492
|
246 |
+
transformers/models/funnel/convert_funnel_original_tf_checkpoint_to_pytorch.py,sha256=iKNN_afXPjNMcPX0MYvmabhyAvsIcVnMiYuifogXhwE,2346
|
247 |
+
transformers/models/funnel/modeling_funnel.py,sha256=6Keja81WqGU-rAAyBgAcJ5i9BbrfHUPQFwTYPwc5ewA,66858
|
248 |
+
transformers/models/funnel/modeling_tf_funnel.py,sha256=4c4x74bel9DCr1Gkl-uvc3kH9VBzaZ_pSlXgW9eW3R4,78480
|
249 |
+
transformers/models/funnel/tokenization_funnel.py,sha256=Bm5zf8wblvVBkBAsXoQBrkrm-w1A115cqpB5f7xC4_w,5374
|
250 |
+
transformers/models/funnel/tokenization_funnel_fast.py,sha256=I_bcEn4TG7EePyDGInyJ0pmFW0gR-giKqSujyCfI9Lo,6927
|
251 |
+
transformers/models/gpt2/__init__.py,sha256=8-D8VXEsbHWD9tmqweyqq5CnOYX6VkNxGfzQZaRZDdE,3123
|
252 |
+
transformers/models/gpt2/configuration_gpt2.py,sha256=kUpRhtADZAbjU2ySXzuSq6ON8wORzxwcdFHcDAOiiMM,11777
|
253 |
+
transformers/models/gpt2/convert_gpt2_original_tf_checkpoint_to_pytorch.py,sha256=vBV5t7JmzbZIiSDviZ7FXshxp3clEIkRLEsn74Dt8ZM,2539
|
254 |
+
transformers/models/gpt2/modeling_flax_gpt2.py,sha256=rFctE-bgEx-yXL781trg8I7rBWhAQke-npNa98VCpG8,25996
|
255 |
+
transformers/models/gpt2/modeling_gpt2.py,sha256=n3tCxoqn0lw8mW_7SivNwxMHTuV0oP9Bvjmsz9rdzWc,57110
|
256 |
+
transformers/models/gpt2/modeling_tf_gpt2.py,sha256=CUKfIwdt0KPqCbzMLioKMcWhkyd1en1-k0ZRAbVB5B0,45855
|
257 |
+
transformers/models/gpt2/tokenization_gpt2.py,sha256=AXkEtOyFMOvPNHhC3emnyyc5_tiywhRZIdh1Q6YhMZQ,12364
|
258 |
+
transformers/models/gpt2/tokenization_gpt2_fast.py,sha256=98egXbJ50ZooJHWYGX3btf1S5N8JW2E0gP4SaONa93Y,8131
|
259 |
+
transformers/models/gpt_neo/__init__.py,sha256=UsPoQamm04s36zzOWbr_y0UHkp9sw4_lPru4DAvrnCA,2146
|
260 |
+
transformers/models/gpt_neo/configuration_gpt_neo.py,sha256=17JmCAz6fg_q7P5r_vb7di06SmpVUQcD_YiySfw-j7k,8477
|
261 |
+
transformers/models/gpt_neo/convert_gpt_neo_mesh_tf_to_pytorch.py,sha256=yzNqtgcRsn8Yzqyj_fPr2LtNAneGGMLimOr0vd2QY1Y,2555
|
262 |
+
transformers/models/gpt_neo/modeling_flax_gpt_neo.py,sha256=D-69-XsN2kf-y-hej4BSpvpP3lOsfDNV46DpgsTWq7Q,27203
|
263 |
+
transformers/models/gpt_neo/modeling_gpt_neo.py,sha256=epo0FIDYt5Kq3Q6bUL6U1Mpauf2uLWGVxNEnwsPuaj4,48638
|
264 |
+
transformers/models/herbert/__init__.py,sha256=JGTluXj6Vu7J_PbT96u4fZn747W-kgDxds2XhZUiGgo,1353
|
265 |
+
transformers/models/herbert/tokenization_herbert.py,sha256=JUq0RLMRWVexD-mhH0BlIGwY5FZo4eJ42N38zQeSHDU,3318
|
266 |
+
transformers/models/herbert/tokenization_herbert_fast.py,sha256=CgFQgfanNDVcoVvlKy41mc-wcsRria0klVhlAvt4dKk,6637
|
267 |
+
transformers/models/hubert/__init__.py,sha256=uuaj_2QHmHGy_mF-vJa8hOUPX-YYjsJ6_30XeTXpAdo,2081
|
268 |
+
transformers/models/hubert/configuration_hubert.py,sha256=iLIWTsULEUKHp9yBwkXBw9ieNyCDFnMCH-SsMe8z4Rg,12793
|
269 |
+
transformers/models/hubert/convert_hubert_original_pytorch_checkpoint_to_pytorch.py,sha256=98f1RkezhoFw1o3DBc1JDn1RyPbgSXztIXvZf-PoyeU,10289
|
270 |
+
transformers/models/hubert/modeling_hubert.py,sha256=l57EfHdLE0f-sc8GnnKoh74T_QuOHXOs2JlV2CYmtPU,46180
|
271 |
+
transformers/models/hubert/modeling_tf_hubert.py,sha256=yfCBs7_g7vP-LlkjEFvspNoLc9NXRbfwDijpDNJ6qbg,69660
|
272 |
+
transformers/models/ibert/__init__.py,sha256=6m7pRKEpPY3whQX_tMykyj6GKISmN6EUL8j8muWcH8U,1931
|
273 |
+
transformers/models/ibert/configuration_ibert.py,sha256=oRekTvZ9n4RlAtSccsSwjwE_ixiqwrkWtOPXyv0mK6c,6985
|
274 |
+
transformers/models/ibert/modeling_ibert.py,sha256=04xNFgchSF2y29amqxBVdvesQHSZ9VPxxt77TCwNX2c,55422
|
275 |
+
transformers/models/ibert/quant_modules.py,sha256=PLC0kaGCLpba2U9KVSnKgr3TXHArzDn2KDSa-X9jb4E,30518
|
276 |
+
transformers/models/layoutlm/__init__.py,sha256=ty6xok63JL_NvbGJ526pApD9wRIlBHtg_w5HEGkRI0I,3074
|
277 |
+
transformers/models/layoutlm/configuration_layoutlm.py,sha256=8wyEXlhMbjtFSj22Um_alHP2s8jp4DLtR-hJhQ6xQUw,6160
|
278 |
+
transformers/models/layoutlm/modeling_layoutlm.py,sha256=DYnhFQo-p910IO8IPkbCyL_bwmNhcScTFaxM4I0nLDo,50874
|
279 |
+
transformers/models/layoutlm/modeling_tf_layoutlm.py,sha256=oyyha6WduufuzUSQZf1B-vXrhh16oNZt7nIRKSn6Huo,58199
|
280 |
+
transformers/models/layoutlm/tokenization_layoutlm.py,sha256=kMS2shyz8IHQeGOnrj73t7EfbFoyP9qXFuT55WWb8E8,2088
|
281 |
+
transformers/models/layoutlm/tokenization_layoutlm_fast.py,sha256=MfxzusXtkSkmF81M7uV6iO9cqjOB9Fyxg9Czu-AzoIk,2550
|
282 |
+
transformers/models/led/__init__.py,sha256=c_bqXSjH3VMk8RAZPB0KaYoiasfZTlX69Jj8107T_n0,2361
|
283 |
+
transformers/models/led/configuration_led.py,sha256=68helyVz8SbpwRRsU5htER8jv1M1yYmjS1fGnKwDqf0,8324
|
284 |
+
transformers/models/led/modeling_led.py,sha256=f7sa7jRQCO8oS8K4NrGjGCzFvj3Xitt31M3pbxUXxQc,134093
|
285 |
+
transformers/models/led/modeling_tf_led.py,sha256=5CCMf3b5AMQpGYZH-C2qRkjFSS9w6R4mUmvxzMJgGPc,120358
|
286 |
+
transformers/models/led/tokenization_led.py,sha256=ZVYzi7oCyeUICFvJs7EjiEOTq0uN7ZAX75hul7UKj7E,1864
|
287 |
+
transformers/models/led/tokenization_led_fast.py,sha256=S9p6bPl0oCT98TKS1-1adPuR3Kar_LqHZSIFnCISiTE,2031
|
288 |
+
transformers/models/longformer/__init__.py,sha256=2uyO1tL0mK-FFx1Nklnt_f_8x11njwTddQDST7E-jkc,3549
|
289 |
+
transformers/models/longformer/configuration_longformer.py,sha256=8C_Qxph7CC74BAkyXULGxaS5i9m6ZlTIATMAoB_eyg0,4123
|
290 |
+
transformers/models/longformer/convert_longformer_original_pytorch_lightning_to_pytorch.py,sha256=ZfHX4qCCudmvGCxJcOOIisAo2-1EKbW8SyR9UPhCxPI,3027
|
291 |
+
transformers/models/longformer/modeling_longformer.py,sha256=lgeIES6cTEsMCrKPIHSxw0A9enGviwf-vB_KPNDmrCo,110628
|
292 |
+
transformers/models/longformer/modeling_tf_longformer.py,sha256=mkPh_c-hLaSUb8sE0Ixf_v2IC9XiLHQTgDhG6BvYMVg,127235
|
293 |
+
transformers/models/longformer/tokenization_longformer.py,sha256=Gt_6dB7x3RbqYRPk8l-dmZ9ZRl4fUKe89GeRUFeHO4s,3160
|
294 |
+
transformers/models/longformer/tokenization_longformer_fast.py,sha256=RA73Key0gDYua8XSn6OJs9BRq6yW4ZUvO9vR-Faoh4g,4188
|
295 |
+
transformers/models/luke/__init__.py,sha256=2WlFJ8I6s1mN2FCQfiHN6uVV9Xxxsm2rZYcKsP_hlRs,1897
|
296 |
+
transformers/models/luke/configuration_luke.py,sha256=H1NBju4NqeJdE5jxfrOrbLj67SRMz57JNTEWaT0SXW4,6702
|
297 |
+
transformers/models/luke/convert_luke_original_pytorch_checkpoint_to_pytorch.py,sha256=RYSLt__QN6rXqeEYdBI-ON8GEA4Hi0f5xR-T2dGlQT4,6719
|
298 |
+
transformers/models/luke/modeling_luke.py,sha256=pnDPHVWAyYjx5SAUvmYHGmRHFdcN2nrimEMw1GxphK4,63091
|
299 |
+
transformers/models/luke/tokenization_luke.py,sha256=WTbawV4mP61BtIHEVz8FaSDE6HDhUJT3JLPIK5KS8nw,78060
|
300 |
+
transformers/models/lxmert/__init__.py,sha256=VSCoPWUxei8l0-Az8O8obTGn0MqGwbxtrjEq6TfxsTI,2749
|
301 |
+
transformers/models/lxmert/configuration_lxmert.py,sha256=Sg8R2l-M0P3EKLep-hPTCvlXguwRTrTnrMlhLqQlNUg,9843
|
302 |
+
transformers/models/lxmert/convert_lxmert_original_tf_checkpoint_to_pytorch.py,sha256=TLkhtn4gzn5Y0iFYvuIEv1IKya2hmydLuVF13imKBTE,2120
|
303 |
+
transformers/models/lxmert/modeling_lxmert.py,sha256=1qgzPq7dnR4pXzODORGCdqj4FBYF_9YkLYxGHoG2yZI,64442
|
304 |
+
transformers/models/lxmert/modeling_tf_lxmert.py,sha256=VcIQaVSg6gwVzA3raIay7HOABdF7gmgu3qBxPTXsY0s,66786
|
305 |
+
transformers/models/lxmert/tokenization_lxmert.py,sha256=mE4AnbatqGoQlBkgG7PZbOOZmB6YswiZLhNAEOAEIRQ,1736
|
306 |
+
transformers/models/lxmert/tokenization_lxmert_fast.py,sha256=isspPJGsydl6KZAJ529-Q2j1TxejJy--Batg4rvMcfM,2098
|
307 |
+
transformers/models/m2m_100/__init__.py,sha256=-PDNEt423yFNbzYDsLATTK17_eWBWe4AyKknWsar784,1828
|
308 |
+
transformers/models/m2m_100/configuration_m2m_100.py,sha256=LNRqyjg0HROfou-W0BuxZnTyjxpHUwVI5lsPBdxfz2A,7857
|
309 |
+
transformers/models/m2m_100/convert_m2m100_original_checkpoint_to_pytorch.py,sha256=j9TXiOt9GCxiEnXIaJ_LoO4VbOgxoJ-M9LA3ln4IjCg,3118
|
310 |
+
transformers/models/m2m_100/modeling_m2m_100.py,sha256=VqEXq2MKESmIwxuGRLbL7WmYuXFC8OqQXY3UvON_ABk,63602
|
311 |
+
transformers/models/m2m_100/tokenization_m2m_100.py,sha256=3ZkGd7pt7lrptKjpz5waSkjYBJi4oGBBoxSg0eEt3jM,16130
|
312 |
+
transformers/models/marian/__init__.py,sha256=mI62_GvVBm3iC7JhbJXFZZTD5v8lWL0BTL-9dyXmM4E,2531
|
313 |
+
transformers/models/marian/configuration_marian.py,sha256=cBlNeGokBQ8mrXwA9k2Wh6gZVUgIhZQXM9QRF_WNA0w,8388
|
314 |
+
transformers/models/marian/convert_marian_tatoeba_to_pytorch.py,sha256=Qq7SMe7zVkUSMzAchyYqUNfSovsbGsf2E37r6Sx69tM,33875
|
315 |
+
transformers/models/marian/convert_marian_to_pytorch.py,sha256=rWSml1KxoloTJVRH_7lQLJRToc9sOXVEkLaCMgwtw44,23461
|
316 |
+
transformers/models/marian/modeling_flax_marian.py,sha256=_GO-tImUJ7k_sb0vpQPQuop2SVMs7CqA3sIw9sLmq4w,63842
|
317 |
+
transformers/models/marian/modeling_marian.py,sha256=ilHieeEScWHFIfbc8PRGbIy0QiK7aiRg8aQdbAuR0QY,73840
|
318 |
+
transformers/models/marian/modeling_tf_marian.py,sha256=-QhRuT9u0dtZ2yAzBZIijUMPhvEAXnjbpx_CJmPX7-w,73427
|
319 |
+
transformers/models/marian/tokenization_marian.py,sha256=eieC6xC-MSE5ZFBZz6F9KFNAa9QFxJth-QM0_HP4f8M,15286
|
320 |
+
transformers/models/mbart/__init__.py,sha256=ttany1sj06obpWDO9H6a4K4k0uMtl_dANYCKH3H1jRs,3526
|
321 |
+
transformers/models/mbart/configuration_mbart.py,sha256=oBN2FZfyVs9Dx7TJyrmXaRsAiSKhOD1rj5pZChg8kqQ,8333
|
322 |
+
transformers/models/mbart/convert_mbart_original_checkpoint_to_pytorch.py,sha256=xVW9Mj-jd7X_MImJCgS52Aok1CGPf-E6u8ptvG1hK8o,3035
|
323 |
+
transformers/models/mbart/modeling_flax_mbart.py,sha256=eH-43cISAda25vLcYpUND4NtXxN1AzpAr6klg3rNWzU,74350
|
324 |
+
transformers/models/mbart/modeling_mbart.py,sha256=mp3KT291lUFW0lUVYq-RjWh7dQEBXAzuOQmFvABMl60,84451
|
325 |
+
transformers/models/mbart/modeling_tf_mbart.py,sha256=ro1TBzHE4u4jHz_PLVSiL2Xgk2s7snXI5s8I4zGPstQ,72804
|
326 |
+
transformers/models/mbart/tokenization_mbart.py,sha256=nN3DBCY5qFG7WgEGLlNa-1C0F_dOr7teewsr3ebLAwU,9967
|
327 |
+
transformers/models/mbart/tokenization_mbart50.py,sha256=eVmRDQ7_KjS3LX4JJ7FjG_ytHG-pUmWBvpJg9pFVB9U,16070
|
328 |
+
transformers/models/mbart/tokenization_mbart50_fast.py,sha256=e0AzTg9Ph_TUWD5nJDgpBB6BLNdqNEM_DZ6edpFcXBg,12145
|
329 |
+
transformers/models/mbart/tokenization_mbart_fast.py,sha256=nJ3d87Fvc9bVjnd0a5ya7HOSX4aMxPE09h9VlghiT8g,9921
|
330 |
+
transformers/models/megatron_bert/__init__.py,sha256=J74QYURqS4nS3uGTVzNGQE0JFbpEgc7I6aVAJarNspQ,2380
|
331 |
+
transformers/models/megatron_bert/configuration_megatron_bert.py,sha256=Gn8_FxqEy647wOATwJOlDP5qrbXwsekqU0uIduAclck,6956
|
332 |
+
transformers/models/megatron_bert/convert_megatron_bert_checkpoint.py,sha256=PGwSEw2cfoJ9-zmJQubu8HkbkUO4my6vZxTW9GdcBAQ,9641
|
333 |
+
transformers/models/megatron_bert/modeling_megatron_bert.py,sha256=8UglDfPpqfCx9MDWoG1TG0-M-R65kXbTH0qb1lTs2Fc,78672
|
334 |
+
transformers/models/mmbt/__init__.py,sha256=oKjujs58kqQU1rd0pKmdk3BVoTE3Y0lD2UPtJN5k2ck,1360
|
335 |
+
transformers/models/mmbt/configuration_mmbt.py,sha256=2XO4AtN7FORz_C4DFB5jcey3ej8Ne--nBLILTt_FlAk,1654
|
336 |
+
transformers/models/mmbt/modeling_mmbt.py,sha256=UdF3xGAeZPQa7YBSmfXsXn2BFDOmwvnqswhHkhg-Deg,19250
|
337 |
+
transformers/models/mobilebert/__init__.py,sha256=pTyay2Q8edgio0nCKPPPGSmTuIkUoujHGEArTzwtfSY,3847
|
338 |
+
transformers/models/mobilebert/configuration_mobilebert.py,sha256=9S8PazcjFWLGS1EwhoaLYI5aw6LpZCdlwoGAdZBot20,7804
|
339 |
+
transformers/models/mobilebert/convert_mobilebert_original_tf_checkpoint_to_pytorch.py,sha256=BuvaIR8XQQ0qxhqS6YLvJi8xTtLurInIjq-oX8Rz3yQ,2172
|
340 |
+
transformers/models/mobilebert/modeling_mobilebert.py,sha256=TpYisJ0_g_GtP0_OtelIVJ0DMYKjn0JufUYyaYrR2M8,66006
|
341 |
+
transformers/models/mobilebert/modeling_tf_mobilebert.py,sha256=EQUO46rqydkCe1Wmjl_Pv6DgMA0b5CMp5GkjoLmdHCQ,76628
|
342 |
+
transformers/models/mobilebert/tokenization_mobilebert.py,sha256=x1j_FozyvSuL6M25gOBVi0mapuqN-do7jdHPgfg84Qw,1729
|
343 |
+
transformers/models/mobilebert/tokenization_mobilebert_fast.py,sha256=w_PmDTnuGZuOT6wo0R0Kuyc-3gYT4FbZYlMGPsfyCE4,2094
|
344 |
+
transformers/models/mpnet/__init__.py,sha256=z93A_sDkyFENbpDASU-c0IahNLgZQ6oCyytI__rzZio,3224
|
345 |
+
transformers/models/mpnet/configuration_mpnet.py,sha256=Z37GxUh0QYaJ5D2xbyTJk9iMMpzkuQBACWGyBQ-mBSE,5659
|
346 |
+
transformers/models/mpnet/modeling_mpnet.py,sha256=UsIbL1FaF1aU8DFBRcqhtk3BSjqV7lTvnrlzUoFzuP0,41065
|
347 |
+
transformers/models/mpnet/modeling_tf_mpnet.py,sha256=oCSNAWZzXNyA0-qD9t-tqLw-4bKMB02ETc4IhsNdI7Q,55732
|
348 |
+
transformers/models/mpnet/tokenization_mpnet.py,sha256=XgFHruMI-lBd9s9-Tv8dZmDh6YoM-t_i1V6mJjTQL9A,22284
|
349 |
+
transformers/models/mpnet/tokenization_mpnet_fast.py,sha256=_qBHq94iKpu4npvZFkFjhce7rIKuKY7N22TI3u3RlIQ,9053
|
350 |
+
transformers/models/mt5/__init__.py,sha256=BpRQBwIvoDRY-RYkiwRxUHuefHthVL8kACYf4_4_Ji8,2221
|
351 |
+
transformers/models/mt5/configuration_mt5.py,sha256=pWs4pj25oQPyjbGOSjjS83ZCo1jIHqWHZ-7WjYGLCs0,5595
|
352 |
+
transformers/models/mt5/modeling_mt5.py,sha256=_-v2WcfNZscy_vhiMh_cYjjRfK3qd-gJ3zpv4jfBlw8,4250
|
353 |
+
transformers/models/mt5/modeling_tf_mt5.py,sha256=rqTMVqQjhG9aWwtqb-oPa2MSUerLr9uZxYeTsMO8riQ,3614
|
354 |
+
transformers/models/openai/__init__.py,sha256=Kuu_25SnPCLTik1aphtT0t9z0vEHcB8imx54lnIPLzg,3011
|
355 |
+
transformers/models/openai/configuration_openai.py,sha256=O3IMC-CClGaDXuiMUu2VlngEnrG1RsrgoI1gIkeIj4s,8395
|
356 |
+
transformers/models/openai/convert_openai_original_tf_checkpoint_to_pytorch.py,sha256=eY_jCzyK6B4SqOkD1SxrEJTjT08d4pPmziROb6vGHy4,2673
|
357 |
+
transformers/models/openai/modeling_openai.py,sha256=XXfjZJk49RwEomzSsbexpz8IMdqPcjPv6niodMkVtKc,35876
|
358 |
+
transformers/models/openai/modeling_tf_openai.py,sha256=PyfzXvlJ2GxJ-5ABM7jjjqk6vR5w-_Nkj0ZG-g7YYp8,41855
|
359 |
+
transformers/models/openai/tokenization_openai.py,sha256=7iPywP1lGU2kiLR9DGsI2y2vf9jxb7UllJE0FGN8Xeo,8507
|
360 |
+
transformers/models/openai/tokenization_openai_fast.py,sha256=-fV3Ltk1sc4Ak0fk9zD3FJXOPTu-Tbboa0j13k5Asl0,3085
|
361 |
+
transformers/models/pegasus/__init__.py,sha256=xMRWkit1zpQ0Gd6M1IN12ZzH9TfG0jmE7rcKMPDe4Bk,2575
|
362 |
+
transformers/models/pegasus/configuration_pegasus.py,sha256=BztBPBbZaSIW6c-BcB65eRfVuJY4bBQrByC9jrNOWIY,8344
|
363 |
+
transformers/models/pegasus/convert_pegasus_tf_to_pytorch.py,sha256=LgO0UB7YBsgZdJYPylRrLbUnRf8k3eRDKaw0JA8Glp8,5362
|
364 |
+
transformers/models/pegasus/modeling_pegasus.py,sha256=TUhLOW61xO53rwkPcTM_wB2VvfNXtwecj7HianhGpqw,73813
|
365 |
+
transformers/models/pegasus/modeling_tf_pegasus.py,sha256=-heh1S459xL_BDiGV8_CmeTFkAG1EF6A0Brj-OAWDgc,73429
|
366 |
+
transformers/models/pegasus/tokenization_pegasus.py,sha256=StexgdFd8CpLUPFUoagzddPhfLjrQNGkMgtJ6h8cRRE,13079
|
367 |
+
transformers/models/pegasus/tokenization_pegasus_fast.py,sha256=_T4R4TCDQi07dT921tLlOxEhzsjSDnrOUXeeKPdCtiw,9639
|
368 |
+
transformers/models/phobert/__init__.py,sha256=_V2Ueixxil_f1RBXGUwvMzf_6Yaw1lCKqYkzTIAgS-I,1116
|
369 |
+
transformers/models/phobert/tokenization_phobert.py,sha256=4TEecbfM4X8VrJq57Y9wLKcd0pmMyVIhbhwNmkTN4m8,13718
|
370 |
+
transformers/models/prophetnet/__init__.py,sha256=bIUI8PIPJkFOQAxFZBghnDMnsPj0f2_ZnwRYICtB4Ak,2031
|
371 |
+
transformers/models/prophetnet/configuration_prophetnet.py,sha256=-AnExbIck6EB4ROTThlTg6Adqa4JAbANbqbNvQMz_bU,8652
|
372 |
+
transformers/models/prophetnet/convert_prophetnet_original_pytorch_checkpoint_to_pytorch.py,sha256=_oqlYxlvWPR_9BwJBmEQ58B1bg4P-yf3Sko9wX3lP40,7055
|
373 |
+
transformers/models/prophetnet/modeling_prophetnet.py,sha256=5z736aQsgS9bJ86VpYQtjQ4LXJHslabn20gYBh7CL8M,113056
|
374 |
+
transformers/models/prophetnet/tokenization_prophetnet.py,sha256=xakQyVlV_m4NqRE0r1dHJKlrwkNsROVDPPEMHDDTz_U,12509
|
375 |
+
transformers/models/rag/__init__.py,sha256=a0u0DIF98xLoV5VoTAHy24ZD9mM7I7NhqhaZPW3fACo,2052
|
376 |
+
transformers/models/rag/configuration_rag.py,sha256=GOnhkJ6WGHw77pMpN6xf4SpZ8lzyS9xXaOs64DVC6EA,9289
|
377 |
+
transformers/models/rag/modeling_rag.py,sha256=3EwNUQozuuvAL0d7KF79MrF7Do3yMjpRUXgx2fN_XxY,89845
|
378 |
+
transformers/models/rag/modeling_tf_rag.py,sha256=Su0pPCrQ0NmLUm5cWMYSb5K5qr8Ba1tzi6c0VCYtTmQ,97101
|
379 |
+
transformers/models/rag/retrieval_rag.py,sha256=xMTDJwBDUOw01X_9yHpK_wfGXg6uxwj4sNE9n-PN08k,29159
|
380 |
+
transformers/models/rag/tokenization_rag.py,sha256=08-s-tiVRhB0Yqxoea1Ep-gOaL2R7z2ia91773xXBD8,4898
|
381 |
+
transformers/models/reformer/__init__.py,sha256=nNXoNdsf884qBloou0TQCFapCiLv898FN_k4CYzyMck,2499
|
382 |
+
transformers/models/reformer/configuration_reformer.py,sha256=bNJM7XsYQSmk_ZHPoBBVVHQ7LPg3z0W14Gmcw_efIaM,13521
|
383 |
+
transformers/models/reformer/convert_reformer_trax_checkpoint_to_pytorch.py,sha256=DcGRSF2im7h_TO8l0rFBk66d_6OhngYeSfyrGyutWuY,7790
|
384 |
+
transformers/models/reformer/modeling_reformer.py,sha256=7VWx7_MXLlQxjgtstNw7IgNSo2PRafS-wbTrgtq2PVY,110884
|
385 |
+
transformers/models/reformer/tokenization_reformer.py,sha256=gBxaBZmJoEFHjzk2P1xODP3O32uL10pjhINcgIPuJg4,6679
|
386 |
+
transformers/models/reformer/tokenization_reformer_fast.py,sha256=EMGT7cCWJFbD82G4IE59N4Tx-7GhJ54oXAdvO3XUXmU,4552
|
387 |
+
transformers/models/retribert/__init__.py,sha256=Db7873ksFIGPFJx1nEz7xGE8EHhsNnaFFKd7vdQnuWk,1976
|
388 |
+
transformers/models/retribert/configuration_retribert.py,sha256=W_myqgj6wt7Mfjyp2lh3sAKZKySDTHb5cyv2mC7eLHI,5357
|
389 |
+
transformers/models/retribert/modeling_retribert.py,sha256=98oQX_Bgy6vblcsDOC34IPY6UAYBeJPbPrwEuFHW8xQ,9449
|
390 |
+
transformers/models/retribert/tokenization_retribert.py,sha256=BcwImDIPRPUC9gtyTbhS9ebH2ucBmdTeVSyK-Zq1Xhg,1884
|
391 |
+
transformers/models/retribert/tokenization_retribert_fast.py,sha256=cuuATXGrP06EBv8m97qCcT1-ofFoogVHhSVuvzTrvss,2264
|
392 |
+
transformers/models/roberta/__init__.py,sha256=tulPJ-NSPHTfoK_NdcwhQV3EkPpVI3gzJmfxHAEEc2Q,4054
|
393 |
+
transformers/models/roberta/configuration_roberta.py,sha256=gRzEkedL_dw6shbgbr4GuoYVPb4VbelA3mdiqfevF_I,3454
|
394 |
+
transformers/models/roberta/convert_roberta_original_pytorch_checkpoint_to_pytorch.py,sha256=MmHtq9AhcXXd-V8Fz0XWC8n-PL-S1MSdFhTCVM6Cksk,8002
|
395 |
+
transformers/models/roberta/modeling_flax_roberta.py,sha256=ZvxHbBTTFS6ecp4cmRuCPq49uclwal48HQR77iZbmAI,37120
|
396 |
+
transformers/models/roberta/modeling_roberta.py,sha256=t_D8BPYqIHs6nQJ2xeVo0viiR79tTIN-Kc4prpFAKd8,67588
|
397 |
+
transformers/models/roberta/modeling_tf_roberta.py,sha256=lH0JfsAIKSHvVr46PhLKPLKWvW7xElGENUOiGg4tofs,59857
|
398 |
+
transformers/models/roberta/tokenization_roberta.py,sha256=inJ9xhlSsMcv2cTQ_apS6Xuk8GkvwsFXPgWKc82aJNg,12006
|
399 |
+
transformers/models/roberta/tokenization_roberta_fast.py,sha256=uxe_9O6ANxFLw1t0gaFfn9iUiTd6X4WaEFSHS3ahKdE,10916
|
400 |
+
transformers/models/roformer/__init__.py,sha256=6d-ATp-OlOjDenpwvwYkMZnpq1Y1mZEtX2os6yfhaSE,3512
|
401 |
+
transformers/models/roformer/configuration_roformer.py,sha256=dBFEhEwM-ebYom_a2_R23fhBlcCfJRvg4G-2E62Uox0,7442
|
402 |
+
transformers/models/roformer/convert_roformer_original_tf_checkpoint_to_pytorch.py,sha256=wXcik_5PQnfFOCQKCk7SEdWIOshUA8Fn-bus3FLcxCg,2212
|
403 |
+
transformers/models/roformer/modeling_roformer.py,sha256=voeQwiUx1Q1ck7vKRpAGYs3oUjYOiTBIMpai2rbbzAM,67008
|
404 |
+
transformers/models/roformer/modeling_tf_roformer.py,sha256=r1IVhCoowUm-n9nu8yOoOiKVqdjQOfwm81zGJnqFZo4,67531
|
405 |
+
transformers/models/roformer/tokenization_roformer.py,sha256=t-nm-1Yjrb5PgosmQZ2hXtj0qKsucK2TFAoQGeZMv8k,14478
|
406 |
+
transformers/models/roformer/tokenization_roformer_fast.py,sha256=IgBPYrE0KsD-HrKU1MusxY_CHRFcTcis161OgpPpRZk,8273
|
407 |
+
transformers/models/roformer/tokenization_utils.py,sha256=LGRWPOJf2U2YLOpsjzaR6Y1NtWNjHliHIKfVSd6ZuNw,2651
|
408 |
+
transformers/models/speech_to_text/__init__.py,sha256=1qy--WQ03zDxoF-kCi2RkZz_hmXa3DmaJPfXXdSzOow,2527
|
409 |
+
transformers/models/speech_to_text/configuration_speech_to_text.py,sha256=s1hj5wJouybXduJcSQ3bwfKYYYQhZxXZxYlaqHorGl4,9928
|
410 |
+
transformers/models/speech_to_text/convert_s2t_fairseq_to_tfms.py,sha256=asrE04TN3OWd5yT7L9yDqPYhuNqB82FGw56L5VbG_EA,4071
|
411 |
+
transformers/models/speech_to_text/feature_extraction_speech_to_text.py,sha256=rbtDO7OqjF5FGTGjwmDPU89Pvxy6n_Qx-BZiI58owls,10108
|
412 |
+
transformers/models/speech_to_text/modeling_speech_to_text.py,sha256=BOB1D16o00hhEBWZZz1awYROb_ozU63cQp_kbkkbRPM,64733
|
413 |
+
transformers/models/speech_to_text/processing_speech_to_text.py,sha256=4cZZgbmP1Crbc9XYGJX5Z72PYHOxlY8mnxw4Pbyv7iU,6929
|
414 |
+
transformers/models/speech_to_text/tokenization_speech_to_text.py,sha256=m3zNK0xuOS37FkcsZfmlw5DzQ3IX2vAQYlyXwWOAmTQ,10949
|
415 |
+
transformers/models/squeezebert/__init__.py,sha256=4gCRM4FVU2XKhsSf_VbYxyxLUoDqkc-KxgpsZDWrRWM,2510
|
416 |
+
transformers/models/squeezebert/configuration_squeezebert.py,sha256=M4M57OqBRwIe_Y71ecT9hUKrz9CO-bxiB_yFDcErBKE,7210
|
417 |
+
transformers/models/squeezebert/modeling_squeezebert.py,sha256=dCooKrhCdCE2osHmCVIUaoycPcZdPGaxsoZt4NsK2Wc,44244
|
418 |
+
transformers/models/squeezebert/tokenization_squeezebert.py,sha256=-sWtxf57A52qlfS7XwIfewRppAr8OftrxfV0xEs8UsM,2337
|
419 |
+
transformers/models/squeezebert/tokenization_squeezebert_fast.py,sha256=JXQVbkOSiaEgFtMvaWLG6M2cVL22y85crB4sTNGt6E8,2989
|
420 |
+
transformers/models/t5/__init__.py,sha256=-u3A6ueGC8rpxKjcKlrsRlDooSboWYssZLWrcHxq2IE,3042
|
421 |
+
transformers/models/t5/configuration_t5.py,sha256=Vg7u9e8DWojoz_PYZkrNUiL_O23x5eXgbjRqpyvQDZ8,8940
|
422 |
+
transformers/models/t5/convert_t5_original_tf_checkpoint_to_pytorch.py,sha256=hTwfWSLeVT9i8l8lRQ9ofEv2ntGTvgfM0UVZsA3LvCk,2107
|
423 |
+
transformers/models/t5/modeling_flax_t5.py,sha256=4RMRMKJ4ptzOkIBBYEZxEy4-u4xS8TNJM9cdslihjK4,68939
|
424 |
+
transformers/models/t5/modeling_t5.py,sha256=EQcKb0BnOTx8z1yRuDYG7fx3comU4Uj4zjASFFCzZdE,81418
|
425 |
+
transformers/models/t5/modeling_tf_t5.py,sha256=Q9HTjJebfchBEUEzGLwunueb_377OJbfdGGJqAjGiiY,74076
|
426 |
+
transformers/models/t5/tokenization_t5.py,sha256=qjvLzzMh5lCIkZtyPv4Y5e-vEjTpQnnvZQR9GyJU9KM,13155
|
427 |
+
transformers/models/t5/tokenization_t5_fast.py,sha256=bO8fzOuAZXWTI1o1mqiA1UisIZdXJ0aLs7CY_b5C5Wo,8622
|
428 |
+
transformers/models/tapas/__init__.py,sha256=jBUhjUUwsiSqjk1AgeP6XkxFMNkdRJffB9N_3AhHVxE,1879
|
429 |
+
transformers/models/tapas/configuration_tapas.py,sha256=ovPtzJgLjW4ppDSDvcocRVGmiXv9XoizwtdbKY9T2w8,13459
|
430 |
+
transformers/models/tapas/convert_tapas_original_tf_checkpoint_to_pytorch.py,sha256=UDEBfWljuOIQexm-N3pChKLyg7gx-IQEsSHW7JomQ9s,5093
|
431 |
+
transformers/models/tapas/modeling_tapas.py,sha256=0UqlVo_UmZukhObFmIgSgNOgiAwYgrrfoQsPq0S5Od0,106883
|
432 |
+
transformers/models/tapas/tokenization_tapas.py,sha256=yFO0S_mB74wUIUVQ1puI9BTy6QeokM7TXohPEgX80Y0,119284
|
433 |
+
transformers/models/transfo_xl/__init__.py,sha256=uYpLphZEHNnLiRsbCNEYoRBLdhO3doyW9rETM69JDZY,2808
|
434 |
+
transformers/models/transfo_xl/configuration_transfo_xl.py,sha256=2bODKg3NEjwIXbjMiZ22SrsFKINOBR_C2-K9_G07ENs,8128
|
435 |
+
transformers/models/transfo_xl/convert_transfo_xl_original_tf_checkpoint_to_pytorch.py,sha256=lAVYBSr2ab3uDAhMw_8n33-4aoDyYQO9A-PNcAU0b5E,4923
|
436 |
+
transformers/models/transfo_xl/modeling_tf_transfo_xl.py,sha256=4OYvrmRvue_Ae5eZsNCHP2B80FZ74rJpf8iz5kxi4OY,48370
|
437 |
+
transformers/models/transfo_xl/modeling_tf_transfo_xl_utilities.py,sha256=iwocQ-kpV_dqAnUB6jPv76yHatVUYEXHPem3XFDAQAk,7588
|
438 |
+
transformers/models/transfo_xl/modeling_transfo_xl.py,sha256=iXD4CfbOyV4C4a8KM5IXMKMEq3LTquC4F4KdUqVQSlE,53495
|
439 |
+
transformers/models/transfo_xl/modeling_transfo_xl_utilities.py,sha256=sheazQjoBvIksNMffYTADjaMC6X1gSWr9hR_zQpCjUY,10694
|
440 |
+
transformers/models/transfo_xl/tokenization_transfo_xl.py,sha256=ZQmNR3exoYZboIxYs7HZsQSn386dEZYASkQRx6Rlclg,30667
|
441 |
+
transformers/models/visual_bert/__init__.py,sha256=flKX03g9KU9mf6v2LWDlWCeJMVAJZHjGnDOJBtUYTdc,2116
|
442 |
+
transformers/models/visual_bert/configuration_visual_bert.py,sha256=4wsh4LrnXNbGQ3lPdBkP4qxqPy0zaXhpGh2K2iB7cNo,8153
|
443 |
+
transformers/models/visual_bert/convert_visual_bert_original_pytorch_checkpoint_to_pytorch.py,sha256=BpXgEZ-5LdGIa0NK6BDZd_5VhKCqeWuu2oOQyUqcSRQ,5158
|
444 |
+
transformers/models/visual_bert/modeling_visual_bert.py,sha256=Rc43knmNLD6uI66vyZNK0fTHEOosTwrjhcopW-quAr0,67162
|
445 |
+
transformers/models/vit/__init__.py,sha256=rdATzgA1CfceD2RFwYyfD_Bs-OcSkAsXA0jsIINjPug,2159
|
446 |
+
transformers/models/vit/configuration_vit.py,sha256=LZ_aYYvTfKkd2HtwUD9w0Hk4Q_wNpUfr3j4JcFRGKy0,5272
|
447 |
+
transformers/models/vit/convert_vit_timm_to_pytorch.py,sha256=83K2Hli6kDDtSbzZVHMIAw9jZ0AAcukDUJMAq4Aiez0,9959
|
448 |
+
transformers/models/vit/feature_extraction_vit.py,sha256=-s5cwMYhHyov9LXIh145JIyWxiWlGHmaUJ-5uIA7vGI,6646
|
449 |
+
transformers/models/vit/modeling_flax_vit.py,sha256=vV__cL9a9Lguh2_ptAfjwtqavCJKdq6z8o-TZl-d-HY,22844
|
450 |
+
transformers/models/vit/modeling_vit.py,sha256=I4lK4yN84p206VqA-JjCleac2ctKQzZf0X3KGro_ygw,24782
|
451 |
+
transformers/models/wav2vec2/__init__.py,sha256=sR97F-tPBYyac6sgjD7rWD_jCIZgUrFVvOEnNQxTHGI,3145
|
452 |
+
transformers/models/wav2vec2/configuration_wav2vec2.py,sha256=rqIJsWPvw6xnHf_Q3EMn4Pbg28n0GLgMswKvA5ozwm8,15046
|
453 |
+
transformers/models/wav2vec2/convert_wav2vec2_original_pytorch_checkpoint_to_pytorch.py,sha256=jzAZ6w7PsLx5gS--97KRVqu9GUB9RAA3N4DRHdVLm5E,10612
|
454 |
+
transformers/models/wav2vec2/feature_extraction_wav2vec2.py,sha256=laPduyLSgI7_o-U2YWbuC1o8fMAKJGJvmrNKWK7Y1g0,9625
|
455 |
+
transformers/models/wav2vec2/modeling_flax_wav2vec2.py,sha256=tPCN8hMXDXb0wgxue04ylUdMSA62AahUxubGiE6zXT0,50889
|
456 |
+
transformers/models/wav2vec2/modeling_tf_wav2vec2.py,sha256=aMx22BkJ_zmhDde-CDmnknaYmp0rpAHfARBZdR-8vS4,68358
|
457 |
+
transformers/models/wav2vec2/modeling_wav2vec2.py,sha256=l2N3HuSaCTE6Ew5RI3gwunz_2M8MYpBks1Hik2Lifsg,66594
|
458 |
+
transformers/models/wav2vec2/processing_wav2vec2.py,sha256=XIwqEzES6C3KFQ_psUdZAx3xzWTfcG_FWDlXg8toUg8,7492
|
459 |
+
transformers/models/wav2vec2/tokenization_wav2vec2.py,sha256=H_n0WsQXC2w8uMmxw4nUBoiHouhRMWwea9I-K7V_QTA,24737
|
460 |
+
transformers/models/xlm/__init__.py,sha256=k9072VbB3P_guUxyLYurfp3i-i_742Hhv2AB9zfXUBg,2886
|
461 |
+
transformers/models/xlm/configuration_xlm.py,sha256=PQghZwWIoZHY_1Zpb-372ex47yjXiMbU_VrlyXX-7yM,11891
|
462 |
+
transformers/models/xlm/convert_xlm_original_pytorch_checkpoint_to_pytorch.py,sha256=ixvKniYiujC5ZQCW3xYpAcaUSWTFKJTILkqoxX6374A,2981
|
463 |
+
transformers/models/xlm/modeling_tf_xlm.py,sha256=VhnIH5d3_iRBWPk_fxer0oEjq74kJlXaTZqeBr5TYgc,59142
|
464 |
+
transformers/models/xlm/modeling_xlm.py,sha256=F7pqqiUZg-7ewEp_R0Wxdc6O02DLar3mmmfDtXP_jUY,53247
|
465 |
+
transformers/models/xlm/tokenization_xlm.py,sha256=RbOclBOmU7Osy6PRQUxKkyt317mrjgJkzS1D76gjzzg,34429
|
466 |
+
transformers/models/xlm_prophetnet/__init__.py,sha256=6L2lF2laIfmnFUQgjiqWlX6Z2NINTURmFYVw2M5FJaI,1360
|
467 |
+
transformers/models/xlm_prophetnet/configuration_xlm_prophetnet.py,sha256=p2_MrOWHYRk9EoKvhunKbGlrJhReI67IzWbXkqmcG0s,1262
|
468 |
+
transformers/models/xlm_prophetnet/modeling_xlm_prophetnet.py,sha256=NuHvNMLA48Dp16WvauAWdRatIOO3e2BcY0AxUze7Vqk,7309
|
469 |
+
transformers/models/xlm_prophetnet/tokenization_xlm_prophetnet.py,sha256=5Ac0wV1ZGTVPjhWhu9v1vOZ_mOgK5yiHPqqxvAt_RC4,13840
|
470 |
+
transformers/models/xlm_roberta/__init__.py,sha256=bzi2itEbJxOmtX3z-cTUInyi78i9-q7ZQAgluZhmZcw,3477
|
471 |
+
transformers/models/xlm_roberta/configuration_xlm_roberta.py,sha256=a5oPK_7AkzVvQLDV3PelW1XfT4P4f2MQaeJxXi5IN58,2620
|
472 |
+
transformers/models/xlm_roberta/modeling_tf_xlm_roberta.py,sha256=jYZyJRO_SxqQyvs9oLZY0sdvaBlFFlQatPO_sanhmHo,6353
|
473 |
+
transformers/models/xlm_roberta/modeling_xlm_roberta.py,sha256=qURTcMrDr7VyG4hsQu0TojmZXtVJj29Z1fWIczQc_pw,5877
|
474 |
+
transformers/models/xlm_roberta/tokenization_xlm_roberta.py,sha256=YlJJLNWLfRc7MKQhaJzE5R5uuZQUUGzOQhfrvmww1nA,14051
|
475 |
+
transformers/models/xlm_roberta/tokenization_xlm_roberta_fast.py,sha256=NemGhCUw3gmt1TSkPSYSs8A3XTjQJ91rfGEyajPEITQ,9965
|
476 |
+
transformers/models/xlnet/__init__.py,sha256=ZOms6ohgB2FUsXhd2qxHQZZAjF4mUKk_Jo-BKWfE3PM,3421
|
477 |
+
transformers/models/xlnet/configuration_xlnet.py,sha256=lgX39bUkziVb4TcTvPKxSz2o2V0oHTfitfC3XErmSGc,11248
|
478 |
+
transformers/models/xlnet/convert_xlnet_original_tf_checkpoint_to_pytorch.py,sha256=3ozPE5V-X4QuheBEt1JzISTO22RrOHgKcVC8qL5HIAA,3695
|
479 |
+
transformers/models/xlnet/modeling_tf_xlnet.py,sha256=aUoiK307bvGvX0RftNTVfV7v1DnGcotYNwx12YLwQBI,81280
|
480 |
+
transformers/models/xlnet/modeling_xlnet.py,sha256=6EKSptAt-adpjO0YKqYz_9E3vI44uO8zYj8QkwG3EMw,91661
|
481 |
+
transformers/models/xlnet/tokenization_xlnet.py,sha256=cHoHZYvhLo2dsEbPqBbumLjpT6RHq7qDdYj6Pi89P70,14406
|
482 |
+
transformers/models/xlnet/tokenization_xlnet_fast.py,sha256=6DqHIr5Mv70OTPYqVZPjbXGVgu3bOwvDzTuW1zWbeX4,9944
|
483 |
+
transformers/onnx/__init__.py,sha256=rRHBpjRxesvUHnf2NTUJL16L9-SVGNkR1YmqRBkuDLE,829
|
484 |
+
transformers/onnx/__main__.py,sha256=KrSH8cy16dJKz_oeFHDBmvytrR65FNtC5weTAIZNiOg,5822
|
485 |
+
transformers/onnx/config.py,sha256=Kt7U7CUc4ZAX5LrdyCGATQsYKwK9IpCbdNFLE9u-qnM,7860
|
486 |
+
transformers/onnx/convert.py,sha256=eQGmvm1eJUfkjcVUFWCIBaiPVG7sJRdxSvbvSc5qd6c,8698
|
487 |
+
transformers/onnx/utils.py,sha256=bElAB-C3AN2l2A8lwUkG4purxXkEGBWStCM0AXVwREQ,2377
|
488 |
+
transformers/pipelines/__init__.py,sha256=ZUNpX9UwRFgTWzrMjpol48vWWUnkKic9W1X57d3FlhY,24467
|
489 |
+
transformers/pipelines/automatic_speech_recognition.py,sha256=S2LU1tl8-b1zrXgiqX7EU5DH6sshGNgCdzNuovSOADo,6526
|
490 |
+
transformers/pipelines/base.py,sha256=hYjw8-7Oti5PYkfkFCnU9y3814r2rO3i-SEM9JNWtts,30282
|
491 |
+
transformers/pipelines/conversational.py,sha256=akS3oT73dsJIdZHyXO_QKq5TEq3KXwfpv6Mj4zd_EyM,14841
|
492 |
+
transformers/pipelines/feature_extraction.py,sha256=y0R5TPrUc_A5tbl-5f1eSUDLt6JIotTof0kTIRpBHLA,3684
|
493 |
+
transformers/pipelines/fill_mask.py,sha256=FYeYCauzvK7QY8dn6iwTHxZRZZ2DSe1gTWApXvs3OeI,8780
|
494 |
+
transformers/pipelines/image_classification.py,sha256=8WsSma4gYtkPwyweMALIInPQ03npLsMPYmMR7SjZOXo,5155
|
495 |
+
transformers/pipelines/question_answering.py,sha256=RjPzKUt6quyA6cOrZRxfMJ8lWOffTaoZzmeGE-nYXR4,24463
|
496 |
+
transformers/pipelines/table_question_answering.py,sha256=QBg7iKJdGZwCVybM0xiGdUJtwVkKm2peHE62AWcvVzo,14037
|
497 |
+
transformers/pipelines/text2text_generation.py,sha256=SroS3fkdEZ7vxE735M0b-b7MoI8sHAHBhUij5JR6TU8,14756
|
498 |
+
transformers/pipelines/text_classification.py,sha256=LwWE0GL5BWrOv10aquipEXCuY56q9LRBz4aC52uVqFo,3194
|
499 |
+
transformers/pipelines/text_generation.py,sha256=6WDJi524pD9GdquT1q6TQko0frLVYs9IGCBp7bWDqUk,8974
|
500 |
+
transformers/pipelines/token_classification.py,sha256=e8tOlIsiHmxEjxXK8AXL7gZoG0KwJkdjYDclo_9n9ik,19373
|
501 |
+
transformers/pipelines/zero_shot_classification.py,sha256=rEkjPSHYE8Il-bTwyGTVDwVRACug-zHzde1Ag80eTfM,8455
|
502 |
+
transformers/sagemaker/__init__.py,sha256=WmEfdtVOQN3cizez_7qbfK_hVmDE1oTqQhV0Q7fNVuM,901
|
503 |
+
transformers/sagemaker/trainer_sm.py,sha256=7GsKLtjdMfKp98OwHD7RcBsl745OOwHAaBswkfLkfsE,1044
|
504 |
+
transformers/sagemaker/training_args_sm.py,sha256=fREG6PvrbXe0rmTiUHO0eAgISz7qAWXf5Ei3Ala2m6Y,4926
|
505 |
+
transformers/utils/__init__.py,sha256=pxGlUMJU0WSxDi6ULwroVNk8hgByUoEXqrCx22mnDPk,1520
|
506 |
+
transformers/utils/coco_classes.py,sha256=48U3Klkr1VryAxpimugM6YTRqhRXpK1u7X4btPXbjPs,1715
|
507 |
+
transformers/utils/dummy_flax_objects.py,sha256=JUvMktNEF-zUMxyf6se2i2uJ79p6R9zP1S64-oakZqI,19181
|
508 |
+
transformers/utils/dummy_pt_objects.py,sha256=NAaDJ6t2ZTMG5Nhy9pEfn27OuhMV2G7uXRPc6dZDCGU,88488
|
509 |
+
transformers/utils/dummy_sentencepiece_and_speech_objects.py,sha256=Vh24cqmfXyyo2XtduItNfznyVtP62-TYOSWVZaEmmaY,376
|
510 |
+
transformers/utils/dummy_sentencepiece_and_tokenizers_objects.py,sha256=99nhSTTd-ghn6A2Rxe8UOl18MsajH1y6KFXuyy07WhU,278
|
511 |
+
transformers/utils/dummy_sentencepiece_objects.py,sha256=Zzk98SIWHNWIEMMYycmBTP6IKNnxygyg2d4vzNFVaoE,4089
|
512 |
+
transformers/utils/dummy_speech_objects.py,sha256=j2XILitMMdU0AEtewjINfTUKfD3Qv2P2WSCGBizImaA,241
|
513 |
+
transformers/utils/dummy_tf_objects.py,sha256=HFmjmxg61GUb9cYtHS8bU-MAufWwJWLu3zYvMsDJ_eA,47447
|
514 |
+
transformers/utils/dummy_timm_and_vision_objects.py,sha256=Vu9aXQBtBXMIq9x91oYtajP2yJt6VYX6iNdzjM5c2PQ,1108
|
515 |
+
transformers/utils/dummy_timm_objects.py,sha256=LVLYwLIWD-7ck2WMJJYwxIWGiMwhRzIENBpE40YnPPw,810
|
516 |
+
transformers/utils/dummy_tokenizers_objects.py,sha256=BkWRVCqQPcd41jB4ecIEOEFKIFcQCscNJ9pYYMoFf9g,8684
|
517 |
+
transformers/utils/dummy_vision_objects.py,sha256=t_FHiZIy_gKDeChR9BtQVSyMW-VbzHPVa3R8kVn0D_E,916
|
518 |
+
transformers/utils/fx.py,sha256=8pdtfR560ZwOXlL0xTDmwOLjellDEjBrph9-tkfWQdk,14869
|
519 |
+
transformers/utils/hp_naming.py,sha256=kTCCyv7RT8cQJ3rb_o7MLtO3yhN0bcG72ZzN2M2mcOw,4971
|
520 |
+
transformers/utils/imagenet_classes.py,sha256=VHr_mLGsXZ6LWxC8N8dff0WkRbHoQ2NWz3DtDm52uSg,33616
|
521 |
+
transformers/utils/logging.py,sha256=huC6tvT0RixnkTdfcIsPcREVN0NoJYKrDS0Qkev4R90,7701
|
522 |
+
transformers/utils/model_parallel_utils.py,sha256=seImhvNcDKwtWL6-G7wPBZOw5Q2m6ZPLZvzSePidV2Y,2186
|
523 |
+
transformers/utils/modeling_auto_mapping.py,sha256=XXbRSLCxlgStQqz1dWcXPJiTUvQ6F1xJAIGyFtdGaOs,16415
|
524 |
+
transformers/utils/notebook.py,sha256=3aA2tIbtdiCoyLo4wDZ6w5MY7vqJ6_EbwztGkN4n9qw,14431
|
525 |
+
transformers/utils/sentencepiece_model_pb2.py,sha256=X9U2bJld-kTtVXLB_EVdSc3AVubf9_s1At9WXyA_JP8,39607
|
526 |
+
transformers/utils/versions.py,sha256=LH0KEy0FXVeyE7pv6LR-lBlVqVJUBy55KNpmiHWO2hY,4381
|
527 |
+
transformers-4.9.1.dist-info/LICENSE,sha256=d_1HEN757DwPYiWADgI18VpCWr1KiwNVkSf814JhIEk,11418
|
528 |
+
transformers-4.9.1.dist-info/METADATA,sha256=F3ivBbwrRTNdbyYmGutYGFyd0MsgZYbVKXPhvcaNbds,49509
|
529 |
+
transformers-4.9.1.dist-info/WHEEL,sha256=EVRjI69F5qVjm_YgqcTXPnTAv3BfSUr0WVAHuSP3Xoo,92
|
530 |
+
transformers-4.9.1.dist-info/entry_points.txt,sha256=NC_VjQxHu59c5WStu_7imUSlBjuk86IvLxhEtlrO-2k,82
|
531 |
+
transformers-4.9.1.dist-info/top_level.txt,sha256=GLBaeTo_CSdhnHvbxQ0kzpEHdlLuA_33foIogaWxntI,13
|
532 |
+
transformers-4.9.1.dist-info/RECORD,,
|
public/gpt-2/transformers-4.9.1.dist-info/WHEEL
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Wheel-Version: 1.0
|
2 |
+
Generator: bdist_wheel (0.35.1)
|
3 |
+
Root-Is-Purelib: true
|
4 |
+
Tag: py3-none-any
|
5 |
+
|
public/gpt-2/transformers-4.9.1.dist-info/entry_points.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
[console_scripts]
|
2 |
+
transformers-cli = transformers.commands.transformers_cli:main
|
3 |
+
|
public/gpt-2/transformers-4.9.1.dist-info/top_level.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
transformers
|
public/gpt-2/transformers/__init__.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
public/gpt-2/transformers/__init__.py.orig
ADDED
The diff for this file is too large to render.
See raw diff
|
|
public/gpt-2/transformers/activations.py
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import math
|
16 |
+
|
17 |
+
import torch
|
18 |
+
from packaging import version
|
19 |
+
from torch import nn
|
20 |
+
|
21 |
+
from .utils import logging
|
22 |
+
|
23 |
+
|
24 |
+
logger = logging.get_logger(__name__)
|
25 |
+
|
26 |
+
|
27 |
+
def _gelu_python(x):
|
28 |
+
"""
|
29 |
+
Original Implementation of the GELU activation function in Google BERT repo when initially created. For
|
30 |
+
information: OpenAI GPT's GELU is slightly different (and gives slightly different results): 0.5 * x * (1 +
|
31 |
+
torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) This is now written in C in nn.functional
|
32 |
+
Also see the Gaussian Error Linear Units paper: https://arxiv.org/abs/1606.08415
|
33 |
+
"""
|
34 |
+
return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))
|
35 |
+
|
36 |
+
|
37 |
+
def gelu_new(x):
|
38 |
+
"""
|
39 |
+
Implementation of the GELU activation function currently in Google BERT repo (identical to OpenAI GPT). Also see
|
40 |
+
the Gaussian Error Linear Units paper: https://arxiv.org/abs/1606.08415
|
41 |
+
"""
|
42 |
+
return 0.5 * x * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi) * (x + 0.044715 * torch.pow(x, 3.0))))
|
43 |
+
|
44 |
+
|
45 |
+
if version.parse(torch.__version__) < version.parse("1.4"):
|
46 |
+
gelu = _gelu_python
|
47 |
+
else:
|
48 |
+
gelu = nn.functional.gelu
|
49 |
+
|
50 |
+
|
51 |
+
def gelu_fast(x):
|
52 |
+
return 0.5 * x * (1.0 + torch.tanh(x * 0.7978845608 * (1.0 + 0.044715 * x * x)))
|
53 |
+
|
54 |
+
|
55 |
+
def quick_gelu(x):
|
56 |
+
return x * torch.sigmoid(1.702 * x)
|
57 |
+
|
58 |
+
|
59 |
+
def _silu_python(x):
|
60 |
+
"""
|
61 |
+
See Gaussian Error Linear Units (Hendrycks et al., https://arxiv.org/abs/1606.08415) where the SiLU (Sigmoid Linear
|
62 |
+
Unit) was originally introduced and coined, and see Sigmoid-Weighted Linear Units for Neural Network Function
|
63 |
+
Approximation in Reinforcement Learning (Elfwing et al., https://arxiv.org/abs/1702.03118) and Swish: a Self-Gated
|
64 |
+
Activation Function (Ramachandran et al., https://arxiv.org/abs/1710.05941v1) where the SiLU was experimented with
|
65 |
+
later.
|
66 |
+
"""
|
67 |
+
return x * torch.sigmoid(x)
|
68 |
+
|
69 |
+
|
70 |
+
if version.parse(torch.__version__) < version.parse("1.7"):
|
71 |
+
silu = _silu_python
|
72 |
+
else:
|
73 |
+
silu = nn.functional.silu
|
74 |
+
|
75 |
+
|
76 |
+
def _mish_python(x):
|
77 |
+
"""
|
78 |
+
See Mish: A Self-Regularized Non-Monotonic Activation Function (Misra., https://arxiv.org/abs/1908.08681). Also
|
79 |
+
visit the official repository for the paper: https://github.com/digantamisra98/Mish
|
80 |
+
"""
|
81 |
+
return x * torch.tanh(nn.functional.softplus(x))
|
82 |
+
|
83 |
+
|
84 |
+
if version.parse(torch.__version__) < version.parse("1.9"):
|
85 |
+
mish = _mish_python
|
86 |
+
else:
|
87 |
+
mish = nn.functional.mish
|
88 |
+
|
89 |
+
|
90 |
+
def linear_act(x):
|
91 |
+
return x
|
92 |
+
|
93 |
+
|
94 |
+
ACT2FN = {
|
95 |
+
"relu": nn.functional.relu,
|
96 |
+
"silu": silu,
|
97 |
+
"swish": silu,
|
98 |
+
"gelu": gelu,
|
99 |
+
"tanh": torch.tanh,
|
100 |
+
"gelu_new": gelu_new,
|
101 |
+
"gelu_fast": gelu_fast,
|
102 |
+
"quick_gelu": quick_gelu,
|
103 |
+
"mish": mish,
|
104 |
+
"linear": linear_act,
|
105 |
+
"sigmoid": torch.sigmoid,
|
106 |
+
}
|
107 |
+
|
108 |
+
|
109 |
+
def get_activation(activation_string):
|
110 |
+
if activation_string in ACT2FN:
|
111 |
+
return ACT2FN[activation_string]
|
112 |
+
else:
|
113 |
+
raise KeyError(f"function {activation_string} not found in ACT2FN mapping {list(ACT2FN.keys())}")
|
public/gpt-2/transformers/activations_tf.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import math
|
16 |
+
|
17 |
+
import tensorflow as tf
|
18 |
+
from packaging import version
|
19 |
+
|
20 |
+
|
21 |
+
def _gelu(x):
|
22 |
+
"""
|
23 |
+
Gaussian Error Linear Unit. Original Implementation of the gelu activation function in Google Bert repo when
|
24 |
+
initially created. For information: OpenAI GPT's gelu is slightly different (and gives slightly different results):
|
25 |
+
0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) Also see
|
26 |
+
https://arxiv.org/abs/1606.08415
|
27 |
+
"""
|
28 |
+
x = tf.convert_to_tensor(x)
|
29 |
+
cdf = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0), x.dtype)))
|
30 |
+
|
31 |
+
return x * cdf
|
32 |
+
|
33 |
+
|
34 |
+
def _gelu_new(x):
|
35 |
+
"""
|
36 |
+
Gaussian Error Linear Unit. This is a smoother version of the GELU. Original paper: https://arxiv.org/abs/1606.0841
|
37 |
+
|
38 |
+
Args:
|
39 |
+
x: float Tensor to perform activation
|
40 |
+
|
41 |
+
Returns:
|
42 |
+
`x` with the GELU activation applied.
|
43 |
+
"""
|
44 |
+
x = tf.convert_to_tensor(x)
|
45 |
+
pi = tf.cast(math.pi, x.dtype)
|
46 |
+
coeff = tf.cast(0.044715, x.dtype)
|
47 |
+
cdf = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi) * (x + coeff * tf.pow(x, 3))))
|
48 |
+
|
49 |
+
return x * cdf
|
50 |
+
|
51 |
+
|
52 |
+
def mish(x):
|
53 |
+
x = tf.convert_to_tensor(x)
|
54 |
+
|
55 |
+
return x * tf.tanh(tf.math.softplus(x))
|
56 |
+
|
57 |
+
|
58 |
+
def gelu_fast(x):
|
59 |
+
x = tf.convert_to_tensor(x)
|
60 |
+
coeff1 = tf.cast(0.044715, x.dtype)
|
61 |
+
coeff2 = tf.cast(0.7978845608, x.dtype)
|
62 |
+
|
63 |
+
return 0.5 * x * (1.0 + tf.tanh(x * coeff2 * (1.0 + coeff1 * x * x)))
|
64 |
+
|
65 |
+
|
66 |
+
if version.parse(tf.version.VERSION) >= version.parse("2.4"):
|
67 |
+
|
68 |
+
def approximate_gelu_wrap(x):
|
69 |
+
return tf.keras.activations.gelu(x, approximate=True)
|
70 |
+
|
71 |
+
gelu = tf.keras.activations.gelu
|
72 |
+
gelu_new = approximate_gelu_wrap
|
73 |
+
else:
|
74 |
+
gelu = _gelu
|
75 |
+
gelu_new = _gelu_new
|
76 |
+
|
77 |
+
|
78 |
+
ACT2FN = {
|
79 |
+
"gelu": gelu,
|
80 |
+
"relu": tf.keras.activations.relu,
|
81 |
+
"swish": tf.keras.activations.swish,
|
82 |
+
"silu": tf.keras.activations.swish,
|
83 |
+
"gelu_new": gelu_new,
|
84 |
+
"mish": mish,
|
85 |
+
"tanh": tf.keras.activations.tanh,
|
86 |
+
"gelu_fast": gelu_fast,
|
87 |
+
}
|
88 |
+
|
89 |
+
|
90 |
+
def get_tf_activation(activation_string):
|
91 |
+
if activation_string in ACT2FN:
|
92 |
+
return ACT2FN[activation_string]
|
93 |
+
else:
|
94 |
+
raise KeyError(f"function {activation_string} not found in ACT2FN mapping {list(ACT2FN.keys())}")
|
public/gpt-2/transformers/benchmark/__init__.py
ADDED
File without changes
|
public/gpt-2/transformers/benchmark/benchmark.py
ADDED
@@ -0,0 +1,267 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The HuggingFace Inc. team.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
"""
|
17 |
+
Benchmarking the library on inference and training in PyTorch.
|
18 |
+
"""
|
19 |
+
|
20 |
+
|
21 |
+
import timeit
|
22 |
+
from typing import Callable, Optional
|
23 |
+
|
24 |
+
from ..configuration_utils import PretrainedConfig
|
25 |
+
from ..file_utils import is_py3nvml_available, is_torch_available
|
26 |
+
from ..models.auto.modeling_auto import MODEL_MAPPING, MODEL_WITH_LM_HEAD_MAPPING
|
27 |
+
from ..utils import logging
|
28 |
+
from .benchmark_utils import (
|
29 |
+
Benchmark,
|
30 |
+
Memory,
|
31 |
+
MemorySummary,
|
32 |
+
measure_peak_memory_cpu,
|
33 |
+
start_memory_tracing,
|
34 |
+
stop_memory_tracing,
|
35 |
+
)
|
36 |
+
|
37 |
+
|
38 |
+
if is_torch_available():
|
39 |
+
import torch
|
40 |
+
|
41 |
+
from .benchmark_args import PyTorchBenchmarkArguments
|
42 |
+
|
43 |
+
|
44 |
+
if is_py3nvml_available():
|
45 |
+
import py3nvml.py3nvml as nvml
|
46 |
+
|
47 |
+
|
48 |
+
logger = logging.get_logger(__name__)
|
49 |
+
|
50 |
+
|
51 |
+
class PyTorchBenchmark(Benchmark):
|
52 |
+
|
53 |
+
args: PyTorchBenchmarkArguments
|
54 |
+
configs: PretrainedConfig
|
55 |
+
framework: str = "PyTorch"
|
56 |
+
|
57 |
+
@property
|
58 |
+
def framework_version(self):
|
59 |
+
return torch.__version__
|
60 |
+
|
61 |
+
def _inference_speed(self, model_name: str, batch_size: int, sequence_length: int) -> float:
|
62 |
+
_inference = self._prepare_inference_func(model_name, batch_size, sequence_length)
|
63 |
+
return self._measure_speed(_inference)
|
64 |
+
|
65 |
+
def _inference_memory(
|
66 |
+
self, model_name: str, batch_size: int, sequence_length: int
|
67 |
+
) -> [Memory, Optional[MemorySummary]]:
|
68 |
+
_inference = self._prepare_inference_func(model_name, batch_size, sequence_length)
|
69 |
+
return self._measure_memory(_inference)
|
70 |
+
|
71 |
+
def _train_speed(self, model_name: str, batch_size: int, sequence_length: int) -> float:
|
72 |
+
_train = self._prepare_train_func(model_name, batch_size, sequence_length)
|
73 |
+
return self._measure_speed(_train)
|
74 |
+
|
75 |
+
def _train_memory(
|
76 |
+
self, model_name: str, batch_size: int, sequence_length: int
|
77 |
+
) -> [Memory, Optional[MemorySummary]]:
|
78 |
+
_train = self._prepare_train_func(model_name, batch_size, sequence_length)
|
79 |
+
return self._measure_memory(_train)
|
80 |
+
|
81 |
+
def _prepare_inference_func(self, model_name: str, batch_size: int, sequence_length: int) -> Callable[[], None]:
|
82 |
+
config = self.config_dict[model_name]
|
83 |
+
|
84 |
+
if self.args.torchscript:
|
85 |
+
config.torchscript = True
|
86 |
+
|
87 |
+
has_model_class_in_config = (
|
88 |
+
hasattr(config, "architectures")
|
89 |
+
and isinstance(config.architectures, list)
|
90 |
+
and len(config.architectures) > 0
|
91 |
+
)
|
92 |
+
if not self.args.only_pretrain_model and has_model_class_in_config:
|
93 |
+
try:
|
94 |
+
model_class = config.architectures[0]
|
95 |
+
transformers_module = __import__("transformers", fromlist=[model_class])
|
96 |
+
model_cls = getattr(transformers_module, model_class)
|
97 |
+
model = model_cls(config)
|
98 |
+
except ImportError:
|
99 |
+
raise ImportError(
|
100 |
+
f"{model_class} does not exist. If you just want to test the pretrained model, you might want to set `--only_pretrain_model` or `args.only_pretrain_model=True`."
|
101 |
+
)
|
102 |
+
else:
|
103 |
+
model = MODEL_MAPPING[config.__class__](config)
|
104 |
+
|
105 |
+
model.eval()
|
106 |
+
model.to(self.args.device)
|
107 |
+
|
108 |
+
# encoder-decoder has vocab size saved differently
|
109 |
+
vocab_size = config.vocab_size if hasattr(config, "vocab_size") else config.encoder.vocab_size
|
110 |
+
input_ids = torch.randint(vocab_size, (batch_size, sequence_length), dtype=torch.long, device=self.args.device)
|
111 |
+
|
112 |
+
if self.args.fp16:
|
113 |
+
logger.info("Running training in Mixed Precision...")
|
114 |
+
assert self.args.is_gpu, "Mixed precision is possible only for GPU."
|
115 |
+
# amp seems to have memory leaks so that memory usage
|
116 |
+
# is measured using .half() for now https://github.com/NVIDIA/apex/issues/439
|
117 |
+
model.half()
|
118 |
+
|
119 |
+
if self.args.torchscript:
|
120 |
+
with torch.no_grad():
|
121 |
+
inference_model = torch.jit.trace(model, input_ids)
|
122 |
+
else:
|
123 |
+
inference_model = model
|
124 |
+
|
125 |
+
def encoder_decoder_forward():
|
126 |
+
with torch.no_grad():
|
127 |
+
outputs = inference_model(input_ids, decoder_input_ids=input_ids)
|
128 |
+
return outputs
|
129 |
+
|
130 |
+
def encoder_forward():
|
131 |
+
with torch.no_grad():
|
132 |
+
outputs = inference_model(input_ids)
|
133 |
+
return outputs
|
134 |
+
|
135 |
+
_forward = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward
|
136 |
+
return _forward
|
137 |
+
|
138 |
+
def _prepare_train_func(self, model_name: str, batch_size: int, sequence_length: int) -> Callable[[], None]:
|
139 |
+
config = self.config_dict[model_name]
|
140 |
+
|
141 |
+
has_model_class_in_config = (
|
142 |
+
hasattr(config, "architectures")
|
143 |
+
and isinstance(config.architectures, list)
|
144 |
+
and len(config.architectures) > 0
|
145 |
+
)
|
146 |
+
if not self.args.only_pretrain_model and has_model_class_in_config:
|
147 |
+
try:
|
148 |
+
model_class = config.architectures[0]
|
149 |
+
transformers_module = __import__("transformers", fromlist=[model_class])
|
150 |
+
model_cls = getattr(transformers_module, model_class)
|
151 |
+
model = model_cls(config)
|
152 |
+
except ImportError:
|
153 |
+
raise ImportError(
|
154 |
+
f"{model_class} does not exist. If you just want to test the pretrained model, you might want to set `--only_pretrain_model` or `args.only_pretrain_model=True`."
|
155 |
+
)
|
156 |
+
else:
|
157 |
+
model = MODEL_WITH_LM_HEAD_MAPPING[config.__class__](config)
|
158 |
+
|
159 |
+
if self.args.torchscript:
|
160 |
+
raise NotImplementedError("Training for torchscript is currently not implemented")
|
161 |
+
else:
|
162 |
+
train_model = model
|
163 |
+
|
164 |
+
model.train()
|
165 |
+
model.to(self.args.device)
|
166 |
+
|
167 |
+
# encoder-decoder has vocab size saved differently
|
168 |
+
vocab_size = config.vocab_size if hasattr(config, "vocab_size") else config.encoder.vocab_size
|
169 |
+
input_ids = torch.randint(vocab_size, (batch_size, sequence_length), dtype=torch.long, device=self.args.device)
|
170 |
+
|
171 |
+
if self.args.fp16:
|
172 |
+
logger.info("Running training in Mixed Precision...")
|
173 |
+
assert self.args.is_gpu, "Mixed precision is possible only for GPU."
|
174 |
+
|
175 |
+
# amp seems to have memory leaks so that memory usage
|
176 |
+
# is measured using .half() for now https://github.com/NVIDIA/apex/issues/439
|
177 |
+
model.half()
|
178 |
+
|
179 |
+
def compute_loss_and_backprob_encoder():
|
180 |
+
loss = train_model(input_ids, labels=input_ids)[0]
|
181 |
+
loss.backward()
|
182 |
+
return loss
|
183 |
+
|
184 |
+
def compute_loss_and_backprob_encoder_decoder():
|
185 |
+
loss = train_model(input_ids, decoder_input_ids=input_ids, labels=input_ids)[0]
|
186 |
+
loss.backward()
|
187 |
+
return loss
|
188 |
+
|
189 |
+
_train = (
|
190 |
+
compute_loss_and_backprob_encoder_decoder
|
191 |
+
if config.is_encoder_decoder
|
192 |
+
else compute_loss_and_backprob_encoder
|
193 |
+
)
|
194 |
+
return _train
|
195 |
+
|
196 |
+
def _measure_speed(self, func) -> float:
|
197 |
+
try:
|
198 |
+
if self.args.is_tpu or self.args.torchscript:
|
199 |
+
# run additional 10 times to stabilize compilation for tpu and torchscript
|
200 |
+
logger.info("Do inference on TPU or torchscript. Running model 5 times to stabilize compilation")
|
201 |
+
timeit.repeat(
|
202 |
+
func,
|
203 |
+
repeat=1,
|
204 |
+
number=5,
|
205 |
+
)
|
206 |
+
|
207 |
+
# as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average
|
208 |
+
runtimes = timeit.repeat(
|
209 |
+
func,
|
210 |
+
repeat=self.args.repeat,
|
211 |
+
number=10,
|
212 |
+
)
|
213 |
+
|
214 |
+
if self.args.is_tpu and self.args.torch_xla_tpu_print_metrics:
|
215 |
+
import torch_xla.debug.metrics as met
|
216 |
+
|
217 |
+
self.print_fn(met.metrics_report())
|
218 |
+
|
219 |
+
return min(runtimes) / 10.0
|
220 |
+
except RuntimeError as e:
|
221 |
+
self.print_fn(f"Doesn't fit on GPU. {e}")
|
222 |
+
return "N/A"
|
223 |
+
|
224 |
+
def _measure_memory(self, func: Callable[[], None]) -> [Memory, MemorySummary]:
|
225 |
+
try:
|
226 |
+
if self.args.trace_memory_line_by_line:
|
227 |
+
trace = start_memory_tracing("transformers")
|
228 |
+
|
229 |
+
if self.args.is_tpu:
|
230 |
+
# tpu
|
231 |
+
raise NotImplementedError(
|
232 |
+
"Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking with `--no-memory` or `args.memory=False`"
|
233 |
+
)
|
234 |
+
elif self.args.is_gpu:
|
235 |
+
if not is_py3nvml_available():
|
236 |
+
logger.warning(
|
237 |
+
"py3nvml not installed, we won't log GPU memory usage. "
|
238 |
+
"Install py3nvml (pip install py3nvml) to log information about GPU."
|
239 |
+
)
|
240 |
+
memory = "N/A"
|
241 |
+
else:
|
242 |
+
logger.info(
|
243 |
+
"Measuring total GPU usage on GPU device. Make sure to not have additional processes running on the same GPU."
|
244 |
+
)
|
245 |
+
# init nvml
|
246 |
+
nvml.nvmlInit()
|
247 |
+
func()
|
248 |
+
handle = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx)
|
249 |
+
meminfo = nvml.nvmlDeviceGetMemoryInfo(handle)
|
250 |
+
max_bytes_in_use = meminfo.used
|
251 |
+
memory = Memory(max_bytes_in_use)
|
252 |
+
# shutdown nvml
|
253 |
+
nvml.nvmlShutdown()
|
254 |
+
else:
|
255 |
+
# cpu
|
256 |
+
memory_bytes = measure_peak_memory_cpu(func)
|
257 |
+
memory = Memory(memory_bytes) if isinstance(memory_bytes, int) else memory_bytes
|
258 |
+
|
259 |
+
if self.args.trace_memory_line_by_line:
|
260 |
+
summary = stop_memory_tracing(trace)
|
261 |
+
else:
|
262 |
+
summary = None
|
263 |
+
|
264 |
+
return memory, summary
|
265 |
+
except RuntimeError as e:
|
266 |
+
self.print_fn(f"Doesn't fit on GPU. {e}")
|
267 |
+
return "N/A", None
|
public/gpt-2/transformers/benchmark/benchmark_args.py
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The HuggingFace Inc. team.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
|
17 |
+
from dataclasses import dataclass, field
|
18 |
+
from typing import Tuple
|
19 |
+
|
20 |
+
from ..file_utils import cached_property, is_torch_available, is_torch_tpu_available, torch_required
|
21 |
+
from ..utils import logging
|
22 |
+
from .benchmark_args_utils import BenchmarkArguments
|
23 |
+
|
24 |
+
|
25 |
+
if is_torch_available():
|
26 |
+
import torch
|
27 |
+
|
28 |
+
if is_torch_tpu_available():
|
29 |
+
import torch_xla.core.xla_model as xm
|
30 |
+
|
31 |
+
|
32 |
+
logger = logging.get_logger(__name__)
|
33 |
+
|
34 |
+
|
35 |
+
@dataclass
|
36 |
+
class PyTorchBenchmarkArguments(BenchmarkArguments):
|
37 |
+
|
38 |
+
deprecated_args = [
|
39 |
+
"no_inference",
|
40 |
+
"no_cuda",
|
41 |
+
"no_tpu",
|
42 |
+
"no_speed",
|
43 |
+
"no_memory",
|
44 |
+
"no_env_print",
|
45 |
+
"no_multi_process",
|
46 |
+
]
|
47 |
+
|
48 |
+
def __init__(self, **kwargs):
|
49 |
+
"""
|
50 |
+
This __init__ is there for legacy code. When removing deprecated args completely, the class can simply be
|
51 |
+
deleted
|
52 |
+
"""
|
53 |
+
for deprecated_arg in self.deprecated_args:
|
54 |
+
if deprecated_arg in kwargs:
|
55 |
+
positive_arg = deprecated_arg[3:]
|
56 |
+
setattr(self, positive_arg, not kwargs.pop(deprecated_arg))
|
57 |
+
logger.warning(
|
58 |
+
f"{deprecated_arg} is depreciated. Please use --no_{positive_arg} or {positive_arg}={kwargs[positive_arg]}"
|
59 |
+
)
|
60 |
+
|
61 |
+
self.torchscript = kwargs.pop("torchscript", self.torchscript)
|
62 |
+
self.torch_xla_tpu_print_metrics = kwargs.pop("torch_xla_tpu_print_metrics", self.torch_xla_tpu_print_metrics)
|
63 |
+
self.fp16_opt_level = kwargs.pop("fp16_opt_level", self.fp16_opt_level)
|
64 |
+
super().__init__(**kwargs)
|
65 |
+
|
66 |
+
torchscript: bool = field(default=False, metadata={"help": "Trace the models using torchscript"})
|
67 |
+
torch_xla_tpu_print_metrics: bool = field(default=False, metadata={"help": "Print Xla/PyTorch tpu metrics"})
|
68 |
+
fp16_opt_level: str = field(
|
69 |
+
default="O1",
|
70 |
+
metadata={
|
71 |
+
"help": (
|
72 |
+
"For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
|
73 |
+
"See details at https://nvidia.github.io/apex/amp.html"
|
74 |
+
)
|
75 |
+
},
|
76 |
+
)
|
77 |
+
|
78 |
+
@cached_property
|
79 |
+
@torch_required
|
80 |
+
def _setup_devices(self) -> Tuple["torch.device", int]:
|
81 |
+
logger.info("PyTorch: setting up devices")
|
82 |
+
if not self.cuda:
|
83 |
+
device = torch.device("cpu")
|
84 |
+
n_gpu = 0
|
85 |
+
elif is_torch_tpu_available():
|
86 |
+
device = xm.xla_device()
|
87 |
+
n_gpu = 0
|
88 |
+
else:
|
89 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
90 |
+
n_gpu = torch.cuda.device_count()
|
91 |
+
return device, n_gpu
|
92 |
+
|
93 |
+
@property
|
94 |
+
def is_tpu(self):
|
95 |
+
return is_torch_tpu_available() and self.tpu
|
96 |
+
|
97 |
+
@property
|
98 |
+
@torch_required
|
99 |
+
def device_idx(self) -> int:
|
100 |
+
# TODO(PVP): currently only single GPU is supported
|
101 |
+
return torch.cuda.current_device()
|
102 |
+
|
103 |
+
@property
|
104 |
+
@torch_required
|
105 |
+
def device(self) -> "torch.device":
|
106 |
+
return self._setup_devices[0]
|
107 |
+
|
108 |
+
@property
|
109 |
+
@torch_required
|
110 |
+
def n_gpu(self):
|
111 |
+
return self._setup_devices[1]
|
112 |
+
|
113 |
+
@property
|
114 |
+
def is_gpu(self):
|
115 |
+
return self.n_gpu > 0
|
public/gpt-2/transformers/benchmark/benchmark_args_tf.py
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The HuggingFace Inc. team.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
|
17 |
+
from dataclasses import dataclass, field
|
18 |
+
from typing import Tuple
|
19 |
+
|
20 |
+
from ..file_utils import cached_property, is_tf_available, tf_required
|
21 |
+
from ..utils import logging
|
22 |
+
from .benchmark_args_utils import BenchmarkArguments
|
23 |
+
|
24 |
+
|
25 |
+
if is_tf_available():
|
26 |
+
import tensorflow as tf
|
27 |
+
|
28 |
+
|
29 |
+
logger = logging.get_logger(__name__)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class TensorFlowBenchmarkArguments(BenchmarkArguments):
|
34 |
+
|
35 |
+
deprecated_args = [
|
36 |
+
"no_inference",
|
37 |
+
"no_cuda",
|
38 |
+
"no_tpu",
|
39 |
+
"no_speed",
|
40 |
+
"no_memory",
|
41 |
+
"no_env_print",
|
42 |
+
"no_multi_process",
|
43 |
+
]
|
44 |
+
|
45 |
+
def __init__(self, **kwargs):
|
46 |
+
"""
|
47 |
+
This __init__ is there for legacy code. When removing deprecated args completely, the class can simply be
|
48 |
+
deleted
|
49 |
+
"""
|
50 |
+
for deprecated_arg in self.deprecated_args:
|
51 |
+
if deprecated_arg in kwargs:
|
52 |
+
positive_arg = deprecated_arg[3:]
|
53 |
+
kwargs[positive_arg] = not kwargs.pop(deprecated_arg)
|
54 |
+
logger.warning(
|
55 |
+
f"{deprecated_arg} is depreciated. Please use --no-{positive_arg} or {positive_arg}={kwargs[positive_arg]}"
|
56 |
+
)
|
57 |
+
self.tpu_name = kwargs.pop("tpu_name", self.tpu_name)
|
58 |
+
self.device_idx = kwargs.pop("device_idx", self.device_idx)
|
59 |
+
self.eager_mode = kwargs.pop("eager_mode", self.eager_mode)
|
60 |
+
self.use_xla = kwargs.pop("use_xla", self.use_xla)
|
61 |
+
super().__init__(**kwargs)
|
62 |
+
|
63 |
+
tpu_name: str = field(
|
64 |
+
default=None,
|
65 |
+
metadata={"help": "Name of TPU"},
|
66 |
+
)
|
67 |
+
device_idx: int = field(
|
68 |
+
default=0,
|
69 |
+
metadata={"help": "CPU / GPU device index. Defaults to 0."},
|
70 |
+
)
|
71 |
+
eager_mode: bool = field(default=False, metadata={"help": "Benchmark models in eager model."})
|
72 |
+
use_xla: bool = field(
|
73 |
+
default=False,
|
74 |
+
metadata={
|
75 |
+
"help": "Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`."
|
76 |
+
},
|
77 |
+
)
|
78 |
+
|
79 |
+
@cached_property
|
80 |
+
@tf_required
|
81 |
+
def _setup_tpu(self) -> Tuple["tf.distribute.cluster_resolver.TPUClusterResolver"]:
|
82 |
+
if self.tpu:
|
83 |
+
try:
|
84 |
+
if self.tpu_name:
|
85 |
+
tpu = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name)
|
86 |
+
else:
|
87 |
+
tpu = tf.distribute.cluster_resolver.TPUClusterResolver()
|
88 |
+
except ValueError:
|
89 |
+
tpu = None
|
90 |
+
return tpu
|
91 |
+
|
92 |
+
@cached_property
|
93 |
+
@tf_required
|
94 |
+
def _setup_strategy(self) -> Tuple["tf.distribute.Strategy", "tf.distribute.cluster_resolver.TPUClusterResolver"]:
|
95 |
+
if self.is_tpu:
|
96 |
+
tf.config.experimental_connect_to_cluster(self._setup_tpu)
|
97 |
+
tf.tpu.experimental.initialize_tpu_system(self._setup_tpu)
|
98 |
+
|
99 |
+
strategy = tf.distribute.TPUStrategy(self._setup_tpu)
|
100 |
+
else:
|
101 |
+
# currently no multi gpu is allowed
|
102 |
+
if self.is_gpu:
|
103 |
+
# TODO: Currently only single GPU is supported
|
104 |
+
tf.config.set_visible_devices(self.gpu_list[self.device_idx], "GPU")
|
105 |
+
strategy = tf.distribute.OneDeviceStrategy(device=f"/gpu:{self.device_idx}")
|
106 |
+
else:
|
107 |
+
tf.config.set_visible_devices([], "GPU") # disable GPU
|
108 |
+
strategy = tf.distribute.OneDeviceStrategy(device=f"/cpu:{self.device_idx}")
|
109 |
+
|
110 |
+
return strategy
|
111 |
+
|
112 |
+
@property
|
113 |
+
@tf_required
|
114 |
+
def is_tpu(self) -> bool:
|
115 |
+
return self._setup_tpu is not None
|
116 |
+
|
117 |
+
@property
|
118 |
+
@tf_required
|
119 |
+
def strategy(self) -> "tf.distribute.Strategy":
|
120 |
+
return self._setup_strategy
|
121 |
+
|
122 |
+
@property
|
123 |
+
@tf_required
|
124 |
+
def gpu_list(self):
|
125 |
+
return tf.config.list_physical_devices("GPU")
|
126 |
+
|
127 |
+
@property
|
128 |
+
@tf_required
|
129 |
+
def n_gpu(self) -> int:
|
130 |
+
if self.cuda:
|
131 |
+
return len(self.gpu_list)
|
132 |
+
return 0
|
133 |
+
|
134 |
+
@property
|
135 |
+
def is_gpu(self) -> bool:
|
136 |
+
return self.n_gpu > 0
|
public/gpt-2/transformers/benchmark/benchmark_args_utils.py
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The HuggingFace Inc. team.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
|
17 |
+
import dataclasses
|
18 |
+
import json
|
19 |
+
from dataclasses import dataclass, field
|
20 |
+
from time import time
|
21 |
+
from typing import List
|
22 |
+
|
23 |
+
from ..utils import logging
|
24 |
+
|
25 |
+
|
26 |
+
logger = logging.get_logger(__name__)
|
27 |
+
|
28 |
+
|
29 |
+
def list_field(default=None, metadata=None):
|
30 |
+
return field(default_factory=lambda: default, metadata=metadata)
|
31 |
+
|
32 |
+
|
33 |
+
@dataclass
|
34 |
+
class BenchmarkArguments:
|
35 |
+
"""
|
36 |
+
BenchMarkArguments are arguments we use in our benchmark scripts **which relate to the training loop itself**.
|
37 |
+
|
38 |
+
Using `HfArgumentParser` we can turn this class into argparse arguments to be able to specify them on the command
|
39 |
+
line.
|
40 |
+
"""
|
41 |
+
|
42 |
+
models: List[str] = list_field(
|
43 |
+
default=[],
|
44 |
+
metadata={
|
45 |
+
"help": "Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version of all available models"
|
46 |
+
},
|
47 |
+
)
|
48 |
+
|
49 |
+
batch_sizes: List[int] = list_field(
|
50 |
+
default=[8], metadata={"help": "List of batch sizes for which memory and time performance will be evaluated"}
|
51 |
+
)
|
52 |
+
|
53 |
+
sequence_lengths: List[int] = list_field(
|
54 |
+
default=[8, 32, 128, 512],
|
55 |
+
metadata={"help": "List of sequence lengths for which memory and time performance will be evaluated"},
|
56 |
+
)
|
57 |
+
|
58 |
+
inference: bool = field(
|
59 |
+
default=True,
|
60 |
+
metadata={"help": "Whether to benchmark inference of model. Inference can be disabled via --no-inference."},
|
61 |
+
)
|
62 |
+
cuda: bool = field(
|
63 |
+
default=True,
|
64 |
+
metadata={"help": "Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."},
|
65 |
+
)
|
66 |
+
tpu: bool = field(
|
67 |
+
default=True, metadata={"help": "Whether to run on available tpu devices. TPU can be disabled via --no-tpu."}
|
68 |
+
)
|
69 |
+
fp16: bool = field(default=False, metadata={"help": "Use FP16 to accelerate inference."})
|
70 |
+
training: bool = field(default=False, metadata={"help": "Benchmark training of model"})
|
71 |
+
verbose: bool = field(default=False, metadata={"help": "Verbose memory tracing"})
|
72 |
+
speed: bool = field(
|
73 |
+
default=True,
|
74 |
+
metadata={"help": "Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."},
|
75 |
+
)
|
76 |
+
memory: bool = field(
|
77 |
+
default=True,
|
78 |
+
metadata={
|
79 |
+
"help": "Whether to perform memory measurements. Memory measurements can be disabled via --no-memory"
|
80 |
+
},
|
81 |
+
)
|
82 |
+
trace_memory_line_by_line: bool = field(default=False, metadata={"help": "Trace memory line by line"})
|
83 |
+
save_to_csv: bool = field(default=False, metadata={"help": "Save result to a CSV file"})
|
84 |
+
log_print: bool = field(default=False, metadata={"help": "Save all print statements in a log file"})
|
85 |
+
env_print: bool = field(default=False, metadata={"help": "Whether to print environment information"})
|
86 |
+
multi_process: bool = field(
|
87 |
+
default=True,
|
88 |
+
metadata={
|
89 |
+
"help": "Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled for debugging / testing and on TPU."
|
90 |
+
},
|
91 |
+
)
|
92 |
+
inference_time_csv_file: str = field(
|
93 |
+
default=f"inference_time_{round(time())}.csv",
|
94 |
+
metadata={"help": "CSV filename used if saving time results to csv."},
|
95 |
+
)
|
96 |
+
inference_memory_csv_file: str = field(
|
97 |
+
default=f"inference_memory_{round(time())}.csv",
|
98 |
+
metadata={"help": "CSV filename used if saving memory results to csv."},
|
99 |
+
)
|
100 |
+
train_time_csv_file: str = field(
|
101 |
+
default=f"train_time_{round(time())}.csv",
|
102 |
+
metadata={"help": "CSV filename used if saving time results to csv for training."},
|
103 |
+
)
|
104 |
+
train_memory_csv_file: str = field(
|
105 |
+
default=f"train_memory_{round(time())}.csv",
|
106 |
+
metadata={"help": "CSV filename used if saving memory results to csv for training."},
|
107 |
+
)
|
108 |
+
env_info_csv_file: str = field(
|
109 |
+
default=f"env_info_{round(time())}.csv",
|
110 |
+
metadata={"help": "CSV filename used if saving environment information."},
|
111 |
+
)
|
112 |
+
log_filename: str = field(
|
113 |
+
default=f"log_{round(time())}.csv",
|
114 |
+
metadata={"help": "Log filename used if print statements are saved in log."},
|
115 |
+
)
|
116 |
+
repeat: int = field(default=3, metadata={"help": "Times an experiment will be run."})
|
117 |
+
only_pretrain_model: bool = field(
|
118 |
+
default=False,
|
119 |
+
metadata={
|
120 |
+
"help": "Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain model weights."
|
121 |
+
},
|
122 |
+
)
|
123 |
+
|
124 |
+
def to_json_string(self):
|
125 |
+
"""
|
126 |
+
Serializes this instance to a JSON string.
|
127 |
+
"""
|
128 |
+
return json.dumps(dataclasses.asdict(self), indent=2)
|
129 |
+
|
130 |
+
@property
|
131 |
+
def model_names(self):
|
132 |
+
assert (
|
133 |
+
len(self.models) > 0
|
134 |
+
), "Please make sure you provide at least one model name / model identifier, *e.g.* `--models bert-base-cased` or `args.models = ['bert-base-cased']."
|
135 |
+
return self.models
|
136 |
+
|
137 |
+
@property
|
138 |
+
def do_multi_processing(self):
|
139 |
+
if not self.multi_process:
|
140 |
+
return False
|
141 |
+
elif self.is_tpu:
|
142 |
+
logger.info("Multiprocessing is currently not possible on TPU.")
|
143 |
+
return False
|
144 |
+
else:
|
145 |
+
return True
|
public/gpt-2/transformers/benchmark/benchmark_tf.py
ADDED
@@ -0,0 +1,294 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The HuggingFace Inc. team.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
"""
|
17 |
+
Benchmarking the library on inference and training in PyTorch.
|
18 |
+
"""
|
19 |
+
|
20 |
+
|
21 |
+
import random
|
22 |
+
import timeit
|
23 |
+
from functools import wraps
|
24 |
+
from typing import Callable, Optional
|
25 |
+
|
26 |
+
from ..configuration_utils import PretrainedConfig
|
27 |
+
from ..file_utils import is_py3nvml_available, is_tf_available
|
28 |
+
from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING
|
29 |
+
from ..utils import logging
|
30 |
+
from .benchmark_utils import (
|
31 |
+
Benchmark,
|
32 |
+
Memory,
|
33 |
+
MemorySummary,
|
34 |
+
measure_peak_memory_cpu,
|
35 |
+
start_memory_tracing,
|
36 |
+
stop_memory_tracing,
|
37 |
+
)
|
38 |
+
|
39 |
+
|
40 |
+
if is_tf_available():
|
41 |
+
import tensorflow as tf
|
42 |
+
from tensorflow.python.framework.errors_impl import ResourceExhaustedError
|
43 |
+
|
44 |
+
from .benchmark_args_tf import TensorFlowBenchmarkArguments
|
45 |
+
|
46 |
+
if is_py3nvml_available():
|
47 |
+
import py3nvml.py3nvml as nvml
|
48 |
+
|
49 |
+
logger = logging.get_logger(__name__)
|
50 |
+
|
51 |
+
|
52 |
+
def run_with_tf_optimizations(do_eager_mode: bool, use_xla: bool):
|
53 |
+
def run_func(func):
|
54 |
+
@wraps(func)
|
55 |
+
def run_in_eager_mode(*args, **kwargs):
|
56 |
+
return func(*args, **kwargs)
|
57 |
+
|
58 |
+
@wraps(func)
|
59 |
+
@tf.function(experimental_compile=use_xla)
|
60 |
+
def run_in_graph_mode(*args, **kwargs):
|
61 |
+
return func(*args, **kwargs)
|
62 |
+
|
63 |
+
if do_eager_mode is True:
|
64 |
+
assert (
|
65 |
+
use_xla is False
|
66 |
+
), "Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`."
|
67 |
+
return run_in_eager_mode
|
68 |
+
else:
|
69 |
+
return run_in_graph_mode
|
70 |
+
|
71 |
+
return run_func
|
72 |
+
|
73 |
+
|
74 |
+
def random_input_ids(batch_size: int, sequence_length: int, vocab_size: int) -> ["tf.Tensor"]:
|
75 |
+
rng = random.Random()
|
76 |
+
values = [rng.randint(0, vocab_size - 1) for i in range(batch_size * sequence_length)]
|
77 |
+
return tf.constant(values, shape=(batch_size, sequence_length), dtype=tf.int32)
|
78 |
+
|
79 |
+
|
80 |
+
class TensorFlowBenchmark(Benchmark):
|
81 |
+
|
82 |
+
args: TensorFlowBenchmarkArguments
|
83 |
+
configs: PretrainedConfig
|
84 |
+
framework: str = "TensorFlow"
|
85 |
+
|
86 |
+
@property
|
87 |
+
def framework_version(self):
|
88 |
+
return tf.__version__
|
89 |
+
|
90 |
+
def _inference_speed(self, model_name: str, batch_size: int, sequence_length: int) -> float:
|
91 |
+
# initialize GPU on separate process
|
92 |
+
strategy = self.args.strategy
|
93 |
+
assert strategy is not None, "A device strategy has to be initialized before using TensorFlow."
|
94 |
+
_inference = self._prepare_inference_func(model_name, batch_size, sequence_length)
|
95 |
+
return self._measure_speed(_inference)
|
96 |
+
|
97 |
+
def _train_speed(self, model_name: str, batch_size: int, sequence_length: int) -> float:
|
98 |
+
strategy = self.args.strategy
|
99 |
+
assert strategy is not None, "A device strategy has to be initialized before using TensorFlow."
|
100 |
+
_train = self._prepare_train_func(model_name, batch_size, sequence_length)
|
101 |
+
return self._measure_speed(_train)
|
102 |
+
|
103 |
+
def _inference_memory(
|
104 |
+
self, model_name: str, batch_size: int, sequence_length: int
|
105 |
+
) -> [Memory, Optional[MemorySummary]]:
|
106 |
+
# initialize GPU on separate process
|
107 |
+
if self.args.is_gpu:
|
108 |
+
tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx], True)
|
109 |
+
strategy = self.args.strategy
|
110 |
+
assert strategy is not None, "A device strategy has to be initialized before using TensorFlow."
|
111 |
+
_inference = self._prepare_inference_func(model_name, batch_size, sequence_length)
|
112 |
+
return self._measure_memory(_inference)
|
113 |
+
|
114 |
+
def _train_memory(
|
115 |
+
self, model_name: str, batch_size: int, sequence_length: int
|
116 |
+
) -> [Memory, Optional[MemorySummary]]:
|
117 |
+
if self.args.is_gpu:
|
118 |
+
tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx], True)
|
119 |
+
strategy = self.args.strategy
|
120 |
+
assert strategy is not None, "A device strategy has to be initialized before using TensorFlow."
|
121 |
+
|
122 |
+
_train = self._prepare_train_func(model_name, batch_size, sequence_length)
|
123 |
+
return self._measure_memory(_train)
|
124 |
+
|
125 |
+
def _prepare_inference_func(self, model_name: str, batch_size: int, sequence_length: int) -> Callable[[], None]:
|
126 |
+
config = self.config_dict[model_name]
|
127 |
+
|
128 |
+
if self.args.fp16:
|
129 |
+
raise NotImplementedError("Mixed precision is currently not supported.")
|
130 |
+
|
131 |
+
has_model_class_in_config = (
|
132 |
+
hasattr(config, "architectures")
|
133 |
+
and isinstance(config.architectures, list)
|
134 |
+
and len(config.architectures) > 0
|
135 |
+
)
|
136 |
+
if not self.args.only_pretrain_model and has_model_class_in_config:
|
137 |
+
try:
|
138 |
+
model_class = "TF" + config.architectures[0] # prepend 'TF' for tensorflow model
|
139 |
+
transformers_module = __import__("transformers", fromlist=[model_class])
|
140 |
+
model_cls = getattr(transformers_module, model_class)
|
141 |
+
model = model_cls(config)
|
142 |
+
except ImportError:
|
143 |
+
raise ImportError(
|
144 |
+
f"{model_class} does not exist. If you just want to test the pretrained model, you might want to set `--only_pretrain_model` or `args.only_pretrain_model=True`."
|
145 |
+
)
|
146 |
+
else:
|
147 |
+
model = TF_MODEL_MAPPING[config.__class__](config)
|
148 |
+
|
149 |
+
# encoder-decoder has vocab size saved differently
|
150 |
+
vocab_size = config.vocab_size if hasattr(config, "vocab_size") else config.encoder.vocab_size
|
151 |
+
input_ids = random_input_ids(batch_size, sequence_length, vocab_size)
|
152 |
+
|
153 |
+
@run_with_tf_optimizations(self.args.eager_mode, self.args.use_xla)
|
154 |
+
def encoder_decoder_forward():
|
155 |
+
return model(input_ids, decoder_input_ids=input_ids, training=False)
|
156 |
+
|
157 |
+
@run_with_tf_optimizations(self.args.eager_mode, self.args.use_xla)
|
158 |
+
def encoder_forward():
|
159 |
+
return model(input_ids, training=False)
|
160 |
+
|
161 |
+
_inference = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward
|
162 |
+
|
163 |
+
return _inference
|
164 |
+
|
165 |
+
def _prepare_train_func(self, model_name: str, batch_size: int, sequence_length: int) -> Callable[[], None]:
|
166 |
+
config = self.config_dict[model_name]
|
167 |
+
|
168 |
+
assert (
|
169 |
+
self.args.eager_mode is False
|
170 |
+
), "Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`."
|
171 |
+
|
172 |
+
if self.args.fp16:
|
173 |
+
raise NotImplementedError("Mixed precision is currently not supported.")
|
174 |
+
|
175 |
+
has_model_class_in_config = (
|
176 |
+
hasattr(config, "architectures")
|
177 |
+
and isinstance(config.architectures, list)
|
178 |
+
and len(config.architectures) > 0
|
179 |
+
)
|
180 |
+
if not self.args.only_pretrain_model and has_model_class_in_config:
|
181 |
+
try:
|
182 |
+
model_class = "TF" + config.architectures[0] # prepend 'TF' for tensorflow model
|
183 |
+
transformers_module = __import__("transformers", fromlist=[model_class])
|
184 |
+
model_cls = getattr(transformers_module, model_class)
|
185 |
+
model = model_cls(config)
|
186 |
+
except ImportError:
|
187 |
+
raise ImportError(
|
188 |
+
f"{model_class} does not exist. If you just want to test the pretrained model, you might want to set `--only_pretrain_model` or `args.only_pretrain_model=True`."
|
189 |
+
)
|
190 |
+
else:
|
191 |
+
model = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](config)
|
192 |
+
|
193 |
+
# encoder-decoder has vocab size saved differently
|
194 |
+
vocab_size = config.vocab_size if hasattr(config, "vocab_size") else config.encoder.vocab_size
|
195 |
+
input_ids = random_input_ids(batch_size, sequence_length, vocab_size)
|
196 |
+
|
197 |
+
@run_with_tf_optimizations(self.args.eager_mode, self.args.use_xla)
|
198 |
+
def encoder_decoder_train():
|
199 |
+
loss = model(input_ids, decoder_input_ids=input_ids, labels=input_ids, training=True)[0]
|
200 |
+
gradients = tf.gradients(loss, model.trainable_variables)
|
201 |
+
return gradients
|
202 |
+
|
203 |
+
@run_with_tf_optimizations(self.args.eager_mode, self.args.use_xla)
|
204 |
+
def encoder_train():
|
205 |
+
loss = model(input_ids, labels=input_ids, training=True)[0]
|
206 |
+
gradients = tf.gradients(loss, model.trainable_variables)
|
207 |
+
return gradients
|
208 |
+
|
209 |
+
_train = encoder_decoder_train if config.is_encoder_decoder else encoder_train
|
210 |
+
|
211 |
+
return _train
|
212 |
+
|
213 |
+
def _measure_speed(self, func) -> float:
|
214 |
+
with self.args.strategy.scope():
|
215 |
+
try:
|
216 |
+
if self.args.is_tpu or self.args.use_xla:
|
217 |
+
# run additional 10 times to stabilize compilation for tpu
|
218 |
+
logger.info("Do inference on TPU. Running model 5 times to stabilize compilation")
|
219 |
+
timeit.repeat(func, repeat=1, number=5)
|
220 |
+
|
221 |
+
# as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average
|
222 |
+
runtimes = timeit.repeat(
|
223 |
+
func,
|
224 |
+
repeat=self.args.repeat,
|
225 |
+
number=10,
|
226 |
+
)
|
227 |
+
|
228 |
+
return min(runtimes) / 10.0
|
229 |
+
except ResourceExhaustedError as e:
|
230 |
+
self.print_fn(f"Doesn't fit on GPU. {e}")
|
231 |
+
|
232 |
+
def _measure_memory(self, func: Callable[[], None]) -> [Memory, MemorySummary]:
|
233 |
+
logger.info(
|
234 |
+
"Note that TensorFlow allocates more memory than"
|
235 |
+
"it might need to speed up computation."
|
236 |
+
"The memory reported here corresponds to the memory"
|
237 |
+
"reported by `nvidia-smi`, which can vary depending"
|
238 |
+
"on total available memory on the GPU that is used."
|
239 |
+
)
|
240 |
+
with self.args.strategy.scope():
|
241 |
+
try:
|
242 |
+
if self.args.trace_memory_line_by_line:
|
243 |
+
assert (
|
244 |
+
self.args.eager_mode
|
245 |
+
), "`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory consumption line by line."
|
246 |
+
trace = start_memory_tracing("transformers")
|
247 |
+
|
248 |
+
if self.args.is_tpu:
|
249 |
+
# tpu
|
250 |
+
raise NotImplementedError(
|
251 |
+
"Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking with `args.memory=False`"
|
252 |
+
)
|
253 |
+
elif self.args.is_gpu:
|
254 |
+
# gpu
|
255 |
+
if not is_py3nvml_available():
|
256 |
+
logger.warning(
|
257 |
+
"py3nvml not installed, we won't log GPU memory usage. "
|
258 |
+
"Install py3nvml (pip install py3nvml) to log information about GPU."
|
259 |
+
)
|
260 |
+
memory = "N/A"
|
261 |
+
else:
|
262 |
+
logger.info(
|
263 |
+
"Measuring total GPU usage on GPU device. Make sure to not have additional processes running on the same GPU."
|
264 |
+
)
|
265 |
+
# init nvml
|
266 |
+
nvml.nvmlInit()
|
267 |
+
func()
|
268 |
+
handle = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx)
|
269 |
+
meminfo = nvml.nvmlDeviceGetMemoryInfo(handle)
|
270 |
+
max_bytes_in_use = meminfo.used
|
271 |
+
memory = Memory(max_bytes_in_use)
|
272 |
+
# shutdown nvml
|
273 |
+
nvml.nvmlShutdown()
|
274 |
+
else:
|
275 |
+
# cpu
|
276 |
+
if self.args.trace_memory_line_by_line:
|
277 |
+
logger.info(
|
278 |
+
"When enabling line by line tracing, the max peak memory for CPU is inaccurate in TensorFlow."
|
279 |
+
)
|
280 |
+
memory = None
|
281 |
+
else:
|
282 |
+
memory_bytes = measure_peak_memory_cpu(func)
|
283 |
+
memory = Memory(memory_bytes) if isinstance(memory_bytes, int) else memory_bytes
|
284 |
+
if self.args.trace_memory_line_by_line:
|
285 |
+
summary = stop_memory_tracing(trace)
|
286 |
+
if memory is None:
|
287 |
+
memory = summary.total
|
288 |
+
else:
|
289 |
+
summary = None
|
290 |
+
|
291 |
+
return memory, summary
|
292 |
+
except ResourceExhaustedError as e:
|
293 |
+
self.print_fn(f"Doesn't fit on GPU. {e}")
|
294 |
+
return "N/A", None
|
public/gpt-2/transformers/benchmark/benchmark_utils.py
ADDED
@@ -0,0 +1,909 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This file is adapted from the AllenNLP library at https://github.com/allenai/allennlp
|
2 |
+
|
3 |
+
# Copyright 2020 The HuggingFace Team and the AllenNLP authors. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
"""
|
17 |
+
Utilities for working with the local dataset cache.
|
18 |
+
"""
|
19 |
+
|
20 |
+
import copy
|
21 |
+
import csv
|
22 |
+
import linecache
|
23 |
+
import os
|
24 |
+
import platform
|
25 |
+
import sys
|
26 |
+
from abc import ABC, abstractmethod
|
27 |
+
from collections import defaultdict, namedtuple
|
28 |
+
from datetime import datetime
|
29 |
+
from multiprocessing import Pipe, Process, Queue
|
30 |
+
from multiprocessing.connection import Connection
|
31 |
+
from typing import Callable, Iterable, List, NamedTuple, Optional, Union
|
32 |
+
|
33 |
+
from .. import AutoConfig, PretrainedConfig
|
34 |
+
from .. import __version__ as version
|
35 |
+
from ..file_utils import is_psutil_available, is_py3nvml_available, is_tf_available, is_torch_available
|
36 |
+
from ..utils import logging
|
37 |
+
from .benchmark_args_utils import BenchmarkArguments
|
38 |
+
|
39 |
+
|
40 |
+
if is_torch_available():
|
41 |
+
from torch.cuda import empty_cache as torch_empty_cache
|
42 |
+
|
43 |
+
if is_tf_available():
|
44 |
+
from tensorflow.python.eager import context as tf_context
|
45 |
+
|
46 |
+
if is_psutil_available():
|
47 |
+
import psutil
|
48 |
+
|
49 |
+
if is_py3nvml_available():
|
50 |
+
import py3nvml.py3nvml as nvml
|
51 |
+
|
52 |
+
if platform.system() == "Windows":
|
53 |
+
from signal import CTRL_C_EVENT as SIGKILL
|
54 |
+
else:
|
55 |
+
from signal import SIGKILL
|
56 |
+
|
57 |
+
|
58 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
59 |
+
|
60 |
+
|
61 |
+
_is_memory_tracing_enabled = False
|
62 |
+
|
63 |
+
BenchmarkOutput = namedtuple(
|
64 |
+
"BenchmarkOutput",
|
65 |
+
[
|
66 |
+
"time_inference_result",
|
67 |
+
"memory_inference_result",
|
68 |
+
"time_train_result",
|
69 |
+
"memory_train_result",
|
70 |
+
"inference_summary",
|
71 |
+
"train_summary",
|
72 |
+
],
|
73 |
+
)
|
74 |
+
|
75 |
+
|
76 |
+
def separate_process_wrapper_fn(func: Callable[[], None], do_multi_processing: bool) -> Callable[[], None]:
|
77 |
+
"""
|
78 |
+
This function wraps another function into its own separated process. In order to ensure accurate memory
|
79 |
+
measurements it is important that the function is executed in a separate process
|
80 |
+
|
81 |
+
Args:
|
82 |
+
|
83 |
+
- `func`: (`callable`): function() -> ... generic function which will be executed in its own separate process
|
84 |
+
- `do_multi_processing`: (`bool`) Whether to run function on separate process or not
|
85 |
+
"""
|
86 |
+
|
87 |
+
def multi_process_func(*args, **kwargs):
|
88 |
+
# run function in an individual
|
89 |
+
# process to get correct memory
|
90 |
+
def wrapper_func(queue: Queue, *args):
|
91 |
+
try:
|
92 |
+
result = func(*args)
|
93 |
+
except Exception as e:
|
94 |
+
logger.error(e)
|
95 |
+
print(e)
|
96 |
+
result = "N/A"
|
97 |
+
queue.put(result)
|
98 |
+
|
99 |
+
queue = Queue()
|
100 |
+
p = Process(target=wrapper_func, args=[queue] + list(args))
|
101 |
+
p.start()
|
102 |
+
result = queue.get()
|
103 |
+
p.join()
|
104 |
+
return result
|
105 |
+
|
106 |
+
if do_multi_processing:
|
107 |
+
logger.info(f"Function {func} is executed in its own process...")
|
108 |
+
return multi_process_func
|
109 |
+
else:
|
110 |
+
return func
|
111 |
+
|
112 |
+
|
113 |
+
def is_memory_tracing_enabled():
|
114 |
+
global _is_memory_tracing_enabled
|
115 |
+
return _is_memory_tracing_enabled
|
116 |
+
|
117 |
+
|
118 |
+
class Frame(NamedTuple):
|
119 |
+
"""
|
120 |
+
`Frame` is a NamedTuple used to gather the current frame state. `Frame` has the following fields:
|
121 |
+
|
122 |
+
- 'filename' (string): Name of the file currently executed
|
123 |
+
- 'module' (string): Name of the module currently executed
|
124 |
+
- 'line_number' (int): Number of the line currently executed
|
125 |
+
- 'event' (string): Event that triggered the tracing (default will be "line")
|
126 |
+
- 'line_text' (string): Text of the line in the python script
|
127 |
+
"""
|
128 |
+
|
129 |
+
filename: str
|
130 |
+
module: str
|
131 |
+
line_number: int
|
132 |
+
event: str
|
133 |
+
line_text: str
|
134 |
+
|
135 |
+
|
136 |
+
class UsedMemoryState(NamedTuple):
|
137 |
+
"""
|
138 |
+
`UsedMemoryState` are named tuples with the following fields:
|
139 |
+
|
140 |
+
- 'frame': a `Frame` namedtuple (see below) storing information on the current tracing frame (current file,
|
141 |
+
location in current file)
|
142 |
+
- 'cpu_memory': CPU RSS memory state *before* executing the line
|
143 |
+
- 'gpu_memory': GPU used memory *before* executing the line (sum for all GPUs or for only `gpus_to_trace` if
|
144 |
+
provided)
|
145 |
+
"""
|
146 |
+
|
147 |
+
frame: Frame
|
148 |
+
cpu_memory: int
|
149 |
+
gpu_memory: int
|
150 |
+
|
151 |
+
|
152 |
+
class Memory(NamedTuple):
|
153 |
+
"""
|
154 |
+
`Memory` NamedTuple have a single field `bytes` and you can get a human readable str of the number of mega bytes by
|
155 |
+
calling `__repr__`
|
156 |
+
|
157 |
+
- `byte` (integer): number of bytes,
|
158 |
+
"""
|
159 |
+
|
160 |
+
bytes: int
|
161 |
+
|
162 |
+
def __repr__(self) -> str:
|
163 |
+
return str(bytes_to_mega_bytes(self.bytes))
|
164 |
+
|
165 |
+
|
166 |
+
class MemoryState(NamedTuple):
|
167 |
+
"""
|
168 |
+
`MemoryState` are namedtuples listing frame + CPU/GPU memory with the following fields:
|
169 |
+
|
170 |
+
- `frame` (`Frame`): the current frame (see above)
|
171 |
+
- `cpu`: CPU memory consumed at during the current frame as a `Memory` named tuple
|
172 |
+
- `gpu`: GPU memory consumed at during the current frame as a `Memory` named tuple
|
173 |
+
- `cpu_gpu`: CPU + GPU memory consumed at during the current frame as a `Memory` named tuple
|
174 |
+
"""
|
175 |
+
|
176 |
+
frame: Frame
|
177 |
+
cpu: Memory
|
178 |
+
gpu: Memory
|
179 |
+
cpu_gpu: Memory
|
180 |
+
|
181 |
+
|
182 |
+
class MemorySummary(NamedTuple):
|
183 |
+
"""
|
184 |
+
`MemorySummary` namedtuple otherwise with the fields:
|
185 |
+
|
186 |
+
- `sequential`: a list of `MemoryState` namedtuple (see below) computed from the provided `memory_trace` by
|
187 |
+
subtracting the memory after executing each line from the memory before executing said line.
|
188 |
+
- `cumulative`: a list of `MemoryState` namedtuple (see below) with cumulative increase in memory for each line
|
189 |
+
obtained by summing repeated memory increase for a line if it's executed several times. The list is sorted
|
190 |
+
from the frame with the largest memory consumption to the frame with the smallest (can be negative if memory
|
191 |
+
is released)
|
192 |
+
- `total`: total memory increase during the full tracing as a `Memory` named tuple (see below). Line with
|
193 |
+
memory release (negative consumption) are ignored if `ignore_released_memory` is `True` (default).
|
194 |
+
"""
|
195 |
+
|
196 |
+
sequential: List[MemoryState]
|
197 |
+
cumulative: List[MemoryState]
|
198 |
+
current: List[MemoryState]
|
199 |
+
total: Memory
|
200 |
+
|
201 |
+
|
202 |
+
MemoryTrace = List[UsedMemoryState]
|
203 |
+
|
204 |
+
|
205 |
+
def measure_peak_memory_cpu(function: Callable[[], None], interval=0.5, device_idx=None) -> int:
|
206 |
+
"""
|
207 |
+
measures peak cpu memory consumption of a given `function` running the function for at least interval seconds and
|
208 |
+
at most 20 * interval seconds. This function is heavily inspired by: `memory_usage` of the package
|
209 |
+
`memory_profiler`:
|
210 |
+
https://github.com/pythonprofilers/memory_profiler/blob/895c4ac7a08020d66ae001e24067da6dcea42451/memory_profiler.py#L239
|
211 |
+
|
212 |
+
Args:
|
213 |
+
|
214 |
+
- `function`: (`callable`): function() -> ... function without any arguments to measure for which to measure
|
215 |
+
the peak memory
|
216 |
+
|
217 |
+
- `interval`: (`float`, `optional`, defaults to `0.5`) interval in second for which to measure the memory usage
|
218 |
+
|
219 |
+
- `device_idx`: (`int`, `optional`, defaults to `None`) device id for which to measure gpu usage
|
220 |
+
|
221 |
+
Returns:
|
222 |
+
|
223 |
+
- `max_memory`: (`int`) consumed memory peak in Bytes
|
224 |
+
"""
|
225 |
+
|
226 |
+
def get_cpu_memory(process_id: int) -> int:
|
227 |
+
"""
|
228 |
+
measures current cpu memory usage of a given `process_id`
|
229 |
+
|
230 |
+
Args:
|
231 |
+
|
232 |
+
- `process_id`: (`int`) process_id for which to measure memory
|
233 |
+
|
234 |
+
Returns
|
235 |
+
|
236 |
+
- `memory`: (`int`) consumed memory in Bytes
|
237 |
+
"""
|
238 |
+
process = psutil.Process(process_id)
|
239 |
+
try:
|
240 |
+
meminfo_attr = "memory_info" if hasattr(process, "memory_info") else "get_memory_info"
|
241 |
+
memory = getattr(process, meminfo_attr)()[0]
|
242 |
+
except psutil.AccessDenied:
|
243 |
+
raise ValueError("Error with Psutil.")
|
244 |
+
return memory
|
245 |
+
|
246 |
+
if not is_psutil_available():
|
247 |
+
logger.warning(
|
248 |
+
"Psutil not installed, we won't log CPU memory usage. "
|
249 |
+
"Install Psutil (pip install psutil) to use CPU memory tracing."
|
250 |
+
)
|
251 |
+
max_memory = "N/A"
|
252 |
+
else:
|
253 |
+
|
254 |
+
class MemoryMeasureProcess(Process):
|
255 |
+
|
256 |
+
"""
|
257 |
+
`MemoryMeasureProcess` inherits from `Process` and overwrites its `run()` method. Used to measure the
|
258 |
+
memory usage of a process
|
259 |
+
"""
|
260 |
+
|
261 |
+
def __init__(self, process_id: int, child_connection: Connection, interval: float):
|
262 |
+
super().__init__()
|
263 |
+
self.process_id = process_id
|
264 |
+
self.interval = interval
|
265 |
+
self.connection = child_connection
|
266 |
+
self.num_measurements = 1
|
267 |
+
self.mem_usage = get_cpu_memory(self.process_id)
|
268 |
+
|
269 |
+
def run(self):
|
270 |
+
self.connection.send(0)
|
271 |
+
stop = False
|
272 |
+
while True:
|
273 |
+
self.mem_usage = max(self.mem_usage, get_cpu_memory(self.process_id))
|
274 |
+
self.num_measurements += 1
|
275 |
+
|
276 |
+
if stop:
|
277 |
+
break
|
278 |
+
|
279 |
+
stop = self.connection.poll(self.interval)
|
280 |
+
|
281 |
+
# send results to parent pipe
|
282 |
+
self.connection.send(self.mem_usage)
|
283 |
+
self.connection.send(self.num_measurements)
|
284 |
+
|
285 |
+
while True:
|
286 |
+
# create child, parent connection
|
287 |
+
child_connection, parent_connection = Pipe()
|
288 |
+
|
289 |
+
# instantiate process
|
290 |
+
mem_process = MemoryMeasureProcess(os.getpid(), child_connection, interval)
|
291 |
+
mem_process.start()
|
292 |
+
|
293 |
+
# wait until we get memory
|
294 |
+
parent_connection.recv()
|
295 |
+
|
296 |
+
try:
|
297 |
+
# execute function
|
298 |
+
function()
|
299 |
+
|
300 |
+
# start parent connection
|
301 |
+
parent_connection.send(0)
|
302 |
+
|
303 |
+
# receive memory and num measurements
|
304 |
+
max_memory = parent_connection.recv()
|
305 |
+
num_measurements = parent_connection.recv()
|
306 |
+
except Exception:
|
307 |
+
# kill process in a clean way
|
308 |
+
parent = psutil.Process(os.getpid())
|
309 |
+
for child in parent.children(recursive=True):
|
310 |
+
os.kill(child.pid, SIGKILL)
|
311 |
+
mem_process.join(0)
|
312 |
+
raise RuntimeError("Process killed. Error in Process")
|
313 |
+
|
314 |
+
# run process at least 20 * interval or until it finishes
|
315 |
+
mem_process.join(20 * interval)
|
316 |
+
|
317 |
+
if (num_measurements > 4) or (interval < 1e-6):
|
318 |
+
break
|
319 |
+
|
320 |
+
# reduce interval
|
321 |
+
interval /= 10
|
322 |
+
|
323 |
+
return max_memory
|
324 |
+
|
325 |
+
|
326 |
+
def start_memory_tracing(
|
327 |
+
modules_to_trace: Optional[Union[str, Iterable[str]]] = None,
|
328 |
+
modules_not_to_trace: Optional[Union[str, Iterable[str]]] = None,
|
329 |
+
events_to_trace: str = "line",
|
330 |
+
gpus_to_trace: Optional[List[int]] = None,
|
331 |
+
) -> MemoryTrace:
|
332 |
+
"""
|
333 |
+
Setup line-by-line tracing to record rss mem (RAM) at each line of a module or sub-module. See `./benchmark.py` for
|
334 |
+
usage examples. Current memory consumption is returned using psutil and in particular is the RSS memory "Resident
|
335 |
+
Set Size” (the non-swapped physical memory the process is using). See
|
336 |
+
https://psutil.readthedocs.io/en/latest/#psutil.Process.memory_info
|
337 |
+
|
338 |
+
Args:
|
339 |
+
|
340 |
+
- `modules_to_trace`: (None, string, list/tuple of string) if None, all events are recorded if string or list
|
341 |
+
of strings: only events from the listed module/sub-module will be recorded (e.g. 'fairseq' or
|
342 |
+
'transformers.models.gpt2.modeling_gpt2')
|
343 |
+
- `modules_not_to_trace`: (None, string, list/tuple of string) if None, no module is avoided if string or list
|
344 |
+
of strings: events from the listed module/sub-module will not be recorded (e.g. 'torch')
|
345 |
+
- `events_to_trace`: string or list of string of events to be recorded (see official python doc for
|
346 |
+
`sys.settrace` for the list of events) default to line
|
347 |
+
- `gpus_to_trace`: (optional list, default None) list of GPUs to trace. Default to tracing all GPUs
|
348 |
+
|
349 |
+
Return:
|
350 |
+
|
351 |
+
- `memory_trace` is a list of `UsedMemoryState` for each event (default each line of the traced script).
|
352 |
+
|
353 |
+
- `UsedMemoryState` are named tuples with the following fields:
|
354 |
+
|
355 |
+
- 'frame': a `Frame` namedtuple (see below) storing information on the current tracing frame (current
|
356 |
+
file, location in current file)
|
357 |
+
- 'cpu_memory': CPU RSS memory state *before* executing the line
|
358 |
+
- 'gpu_memory': GPU used memory *before* executing the line (sum for all GPUs or for only
|
359 |
+
`gpus_to_trace` if provided)
|
360 |
+
|
361 |
+
`Frame` is a namedtuple used by `UsedMemoryState` to list the current frame state. `Frame` has the following
|
362 |
+
fields: - 'filename' (string): Name of the file currently executed - 'module' (string): Name of the module
|
363 |
+
currently executed - 'line_number' (int): Number of the line currently executed - 'event' (string): Event that
|
364 |
+
triggered the tracing (default will be "line") - 'line_text' (string): Text of the line in the python script
|
365 |
+
|
366 |
+
"""
|
367 |
+
if is_psutil_available():
|
368 |
+
process = psutil.Process(os.getpid())
|
369 |
+
else:
|
370 |
+
logger.warning(
|
371 |
+
"Psutil not installed, we won't log CPU memory usage. "
|
372 |
+
"Install psutil (pip install psutil) to use CPU memory tracing."
|
373 |
+
)
|
374 |
+
process = None
|
375 |
+
|
376 |
+
if is_py3nvml_available():
|
377 |
+
try:
|
378 |
+
nvml.nvmlInit()
|
379 |
+
devices = list(range(nvml.nvmlDeviceGetCount())) if gpus_to_trace is None else gpus_to_trace
|
380 |
+
nvml.nvmlShutdown()
|
381 |
+
except (OSError, nvml.NVMLError):
|
382 |
+
logger.warning("Error while initializing communication with GPU. " "We won't perform GPU memory tracing.")
|
383 |
+
log_gpu = False
|
384 |
+
else:
|
385 |
+
log_gpu = is_torch_available() or is_tf_available()
|
386 |
+
else:
|
387 |
+
logger.warning(
|
388 |
+
"py3nvml not installed, we won't log GPU memory usage. "
|
389 |
+
"Install py3nvml (pip install py3nvml) to use GPU memory tracing."
|
390 |
+
)
|
391 |
+
log_gpu = False
|
392 |
+
|
393 |
+
memory_trace = []
|
394 |
+
|
395 |
+
def traceit(frame, event, args):
|
396 |
+
"""
|
397 |
+
Tracing method executed before running each line in a module or sub-module Record memory allocated in a list
|
398 |
+
with debugging information
|
399 |
+
"""
|
400 |
+
global _is_memory_tracing_enabled
|
401 |
+
|
402 |
+
if not _is_memory_tracing_enabled:
|
403 |
+
return traceit
|
404 |
+
|
405 |
+
# Filter events
|
406 |
+
if events_to_trace is not None:
|
407 |
+
if isinstance(events_to_trace, str) and event != events_to_trace:
|
408 |
+
return traceit
|
409 |
+
elif isinstance(events_to_trace, (list, tuple)) and event not in events_to_trace:
|
410 |
+
return traceit
|
411 |
+
|
412 |
+
if "__name__" not in frame.f_globals:
|
413 |
+
return traceit
|
414 |
+
|
415 |
+
# Filter modules
|
416 |
+
name = frame.f_globals["__name__"]
|
417 |
+
if not isinstance(name, str):
|
418 |
+
return traceit
|
419 |
+
else:
|
420 |
+
# Filter whitelist of modules to trace
|
421 |
+
if modules_to_trace is not None:
|
422 |
+
if isinstance(modules_to_trace, str) and modules_to_trace not in name:
|
423 |
+
return traceit
|
424 |
+
elif isinstance(modules_to_trace, (list, tuple)) and all(m not in name for m in modules_to_trace):
|
425 |
+
return traceit
|
426 |
+
|
427 |
+
# Filter blacklist of modules not to trace
|
428 |
+
if modules_not_to_trace is not None:
|
429 |
+
if isinstance(modules_not_to_trace, str) and modules_not_to_trace in name:
|
430 |
+
return traceit
|
431 |
+
elif isinstance(modules_not_to_trace, (list, tuple)) and any(m in name for m in modules_not_to_trace):
|
432 |
+
return traceit
|
433 |
+
|
434 |
+
# Record current tracing state (file, location in file...)
|
435 |
+
lineno = frame.f_lineno
|
436 |
+
filename = frame.f_globals["__file__"]
|
437 |
+
if filename.endswith(".pyc") or filename.endswith(".pyo"):
|
438 |
+
filename = filename[:-1]
|
439 |
+
line = linecache.getline(filename, lineno).rstrip()
|
440 |
+
traced_state = Frame(filename, name, lineno, event, line)
|
441 |
+
|
442 |
+
# Record current memory state (rss memory) and compute difference with previous memory state
|
443 |
+
cpu_mem = 0
|
444 |
+
if process is not None:
|
445 |
+
mem = process.memory_info()
|
446 |
+
cpu_mem = mem.rss
|
447 |
+
|
448 |
+
gpu_mem = 0
|
449 |
+
if log_gpu:
|
450 |
+
# Clear GPU caches
|
451 |
+
if is_torch_available():
|
452 |
+
torch_empty_cache()
|
453 |
+
if is_tf_available():
|
454 |
+
tf_context.context()._clear_caches() # See https://github.com/tensorflow/tensorflow/issues/20218#issuecomment-416771802
|
455 |
+
|
456 |
+
# Sum used memory for all GPUs
|
457 |
+
nvml.nvmlInit()
|
458 |
+
|
459 |
+
for i in devices:
|
460 |
+
handle = nvml.nvmlDeviceGetHandleByIndex(i)
|
461 |
+
meminfo = nvml.nvmlDeviceGetMemoryInfo(handle)
|
462 |
+
gpu_mem += meminfo.used
|
463 |
+
|
464 |
+
nvml.nvmlShutdown()
|
465 |
+
|
466 |
+
mem_state = UsedMemoryState(traced_state, cpu_mem, gpu_mem)
|
467 |
+
memory_trace.append(mem_state)
|
468 |
+
|
469 |
+
return traceit
|
470 |
+
|
471 |
+
sys.settrace(traceit)
|
472 |
+
|
473 |
+
global _is_memory_tracing_enabled
|
474 |
+
_is_memory_tracing_enabled = True
|
475 |
+
|
476 |
+
return memory_trace
|
477 |
+
|
478 |
+
|
479 |
+
def stop_memory_tracing(
|
480 |
+
memory_trace: Optional[MemoryTrace] = None, ignore_released_memory: bool = True
|
481 |
+
) -> Optional[MemorySummary]:
|
482 |
+
"""
|
483 |
+
Stop memory tracing cleanly and return a summary of the memory trace if a trace is given.
|
484 |
+
|
485 |
+
Args:
|
486 |
+
|
487 |
+
`memory_trace` (optional output of start_memory_tracing, default: None):
|
488 |
+
memory trace to convert in summary
|
489 |
+
`ignore_released_memory` (boolean, default: None):
|
490 |
+
if True we only sum memory increase to compute total memory
|
491 |
+
|
492 |
+
Return:
|
493 |
+
|
494 |
+
- None if `memory_trace` is None
|
495 |
+
- `MemorySummary` namedtuple otherwise with the fields:
|
496 |
+
|
497 |
+
- `sequential`: a list of `MemoryState` namedtuple (see below) computed from the provided `memory_trace` by
|
498 |
+
subtracting the memory after executing each line from the memory before executing said line.
|
499 |
+
- `cumulative`: a list of `MemoryState` namedtuple (see below) with cumulative increase in memory for each
|
500 |
+
line obtained by summing repeated memory increase for a line if it's executed several times. The list is
|
501 |
+
sorted from the frame with the largest memory consumption to the frame with the smallest (can be negative
|
502 |
+
if memory is released)
|
503 |
+
- `total`: total memory increase during the full tracing as a `Memory` named tuple (see below). Line with
|
504 |
+
memory release (negative consumption) are ignored if `ignore_released_memory` is `True` (default).
|
505 |
+
|
506 |
+
`Memory` named tuple have fields
|
507 |
+
|
508 |
+
- `byte` (integer): number of bytes,
|
509 |
+
- `string` (string): same as human readable string (ex: "3.5MB")
|
510 |
+
|
511 |
+
`Frame` are namedtuple used to list the current frame state and have the following fields:
|
512 |
+
|
513 |
+
- 'filename' (string): Name of the file currently executed
|
514 |
+
- 'module' (string): Name of the module currently executed
|
515 |
+
- 'line_number' (int): Number of the line currently executed
|
516 |
+
- 'event' (string): Event that triggered the tracing (default will be "line")
|
517 |
+
- 'line_text' (string): Text of the line in the python script
|
518 |
+
|
519 |
+
`MemoryState` are namedtuples listing frame + CPU/GPU memory with the following fields:
|
520 |
+
|
521 |
+
- `frame` (`Frame`): the current frame (see above)
|
522 |
+
- `cpu`: CPU memory consumed at during the current frame as a `Memory` named tuple
|
523 |
+
- `gpu`: GPU memory consumed at during the current frame as a `Memory` named tuple
|
524 |
+
- `cpu_gpu`: CPU + GPU memory consumed at during the current frame as a `Memory` named tuple
|
525 |
+
"""
|
526 |
+
global _is_memory_tracing_enabled
|
527 |
+
_is_memory_tracing_enabled = False
|
528 |
+
|
529 |
+
if memory_trace is not None and len(memory_trace) > 1:
|
530 |
+
memory_diff_trace = []
|
531 |
+
memory_curr_trace = []
|
532 |
+
|
533 |
+
cumulative_memory_dict = defaultdict(lambda: [0, 0, 0])
|
534 |
+
|
535 |
+
for (
|
536 |
+
(frame, cpu_mem, gpu_mem),
|
537 |
+
(next_frame, next_cpu_mem, next_gpu_mem),
|
538 |
+
) in zip(memory_trace[:-1], memory_trace[1:]):
|
539 |
+
cpu_mem_inc = next_cpu_mem - cpu_mem
|
540 |
+
gpu_mem_inc = next_gpu_mem - gpu_mem
|
541 |
+
cpu_gpu_mem_inc = cpu_mem_inc + gpu_mem_inc
|
542 |
+
memory_diff_trace.append(
|
543 |
+
MemoryState(
|
544 |
+
frame=frame,
|
545 |
+
cpu=Memory(cpu_mem_inc),
|
546 |
+
gpu=Memory(gpu_mem_inc),
|
547 |
+
cpu_gpu=Memory(cpu_gpu_mem_inc),
|
548 |
+
)
|
549 |
+
)
|
550 |
+
|
551 |
+
memory_curr_trace.append(
|
552 |
+
MemoryState(
|
553 |
+
frame=frame,
|
554 |
+
cpu=Memory(next_cpu_mem),
|
555 |
+
gpu=Memory(next_gpu_mem),
|
556 |
+
cpu_gpu=Memory(next_gpu_mem + next_cpu_mem),
|
557 |
+
)
|
558 |
+
)
|
559 |
+
|
560 |
+
cumulative_memory_dict[frame][0] += cpu_mem_inc
|
561 |
+
cumulative_memory_dict[frame][1] += gpu_mem_inc
|
562 |
+
cumulative_memory_dict[frame][2] += cpu_gpu_mem_inc
|
563 |
+
|
564 |
+
cumulative_memory = sorted(
|
565 |
+
list(cumulative_memory_dict.items()), key=lambda x: x[1][2], reverse=True
|
566 |
+
) # order by the total CPU + GPU memory increase
|
567 |
+
cumulative_memory = list(
|
568 |
+
MemoryState(
|
569 |
+
frame=frame,
|
570 |
+
cpu=Memory(cpu_mem_inc),
|
571 |
+
gpu=Memory(gpu_mem_inc),
|
572 |
+
cpu_gpu=Memory(cpu_gpu_mem_inc),
|
573 |
+
)
|
574 |
+
for frame, (cpu_mem_inc, gpu_mem_inc, cpu_gpu_mem_inc) in cumulative_memory
|
575 |
+
)
|
576 |
+
|
577 |
+
memory_curr_trace = sorted(memory_curr_trace, key=lambda x: x.cpu_gpu.bytes, reverse=True)
|
578 |
+
|
579 |
+
if ignore_released_memory:
|
580 |
+
total_memory = sum(max(0, step_trace.cpu_gpu.bytes) for step_trace in memory_diff_trace)
|
581 |
+
else:
|
582 |
+
total_memory = sum(step_trace.cpu_gpu.bytes for step_trace in memory_diff_trace)
|
583 |
+
|
584 |
+
total_memory = Memory(total_memory)
|
585 |
+
|
586 |
+
return MemorySummary(
|
587 |
+
sequential=memory_diff_trace,
|
588 |
+
cumulative=cumulative_memory,
|
589 |
+
current=memory_curr_trace,
|
590 |
+
total=total_memory,
|
591 |
+
)
|
592 |
+
|
593 |
+
return None
|
594 |
+
|
595 |
+
|
596 |
+
def bytes_to_mega_bytes(memory_amount: int) -> int:
|
597 |
+
"""Utility to convert a number of bytes (int) into a number of mega bytes (int)"""
|
598 |
+
return memory_amount >> 20
|
599 |
+
|
600 |
+
|
601 |
+
class Benchmark(ABC):
|
602 |
+
"""
|
603 |
+
Benchmarks is a simple but feature-complete benchmarking script to compare memory and time performance of models in
|
604 |
+
Transformers.
|
605 |
+
"""
|
606 |
+
|
607 |
+
args: BenchmarkArguments
|
608 |
+
configs: PretrainedConfig
|
609 |
+
framework: str
|
610 |
+
|
611 |
+
def __init__(self, args: BenchmarkArguments = None, configs: PretrainedConfig = None):
|
612 |
+
self.args = args
|
613 |
+
if configs is None:
|
614 |
+
self.config_dict = {
|
615 |
+
model_name: AutoConfig.from_pretrained(model_name) for model_name in self.args.model_names
|
616 |
+
}
|
617 |
+
else:
|
618 |
+
self.config_dict = {model_name: config for model_name, config in zip(self.args.model_names, configs)}
|
619 |
+
|
620 |
+
if self.args.memory and os.getenv("TRANSFORMERS_USE_MULTIPROCESSING") == 0:
|
621 |
+
logger.warning(
|
622 |
+
"Memory consumption will not be measured accurately if `args.multi_process` is set to `False.` The flag 'TRANSFORMERS_USE_MULTIPROCESSING' should only be disabled for debugging / testing."
|
623 |
+
)
|
624 |
+
|
625 |
+
self._print_fn = None
|
626 |
+
self._framework_version = None
|
627 |
+
self._environment_info = None
|
628 |
+
|
629 |
+
@property
|
630 |
+
def print_fn(self):
|
631 |
+
if self._print_fn is None:
|
632 |
+
if self.args.log_print:
|
633 |
+
|
634 |
+
def print_and_log(*args):
|
635 |
+
with open(self.args.log_filename, "a") as log_file:
|
636 |
+
log_file.write("".join(args) + "\n")
|
637 |
+
print(*args)
|
638 |
+
|
639 |
+
self._print_fn = print_and_log
|
640 |
+
else:
|
641 |
+
self._print_fn = print
|
642 |
+
return self._print_fn
|
643 |
+
|
644 |
+
@property
|
645 |
+
@abstractmethod
|
646 |
+
def framework_version(self):
|
647 |
+
pass
|
648 |
+
|
649 |
+
@abstractmethod
|
650 |
+
def _inference_speed(self, model_name: str, batch_size: int, sequence_length: int) -> float:
|
651 |
+
pass
|
652 |
+
|
653 |
+
@abstractmethod
|
654 |
+
def _train_speed(self, model_name: str, batch_size: int, sequence_length: int) -> float:
|
655 |
+
pass
|
656 |
+
|
657 |
+
@abstractmethod
|
658 |
+
def _inference_memory(
|
659 |
+
self, model_name: str, batch_size: int, sequence_length: int
|
660 |
+
) -> [Memory, Optional[MemorySummary]]:
|
661 |
+
pass
|
662 |
+
|
663 |
+
@abstractmethod
|
664 |
+
def _train_memory(
|
665 |
+
self, model_name: str, batch_size: int, sequence_length: int
|
666 |
+
) -> [Memory, Optional[MemorySummary]]:
|
667 |
+
pass
|
668 |
+
|
669 |
+
def inference_speed(self, *args, **kwargs) -> float:
|
670 |
+
return separate_process_wrapper_fn(self._inference_speed, self.args.do_multi_processing)(*args, **kwargs)
|
671 |
+
|
672 |
+
def train_speed(self, *args, **kwargs) -> float:
|
673 |
+
return separate_process_wrapper_fn(self._train_speed, self.args.do_multi_processing)(*args, **kwargs)
|
674 |
+
|
675 |
+
def inference_memory(self, *args, **kwargs) -> [Memory, Optional[MemorySummary]]:
|
676 |
+
return separate_process_wrapper_fn(self._inference_memory, self.args.do_multi_processing)(*args, **kwargs)
|
677 |
+
|
678 |
+
def train_memory(self, *args, **kwargs) -> [Memory, Optional[MemorySummary]]:
|
679 |
+
return separate_process_wrapper_fn(self._train_memory, self.args.do_multi_processing)(*args, **kwargs)
|
680 |
+
|
681 |
+
def run(self):
|
682 |
+
result_dict = {model_name: {} for model_name in self.args.model_names}
|
683 |
+
inference_result_time = copy.deepcopy(result_dict)
|
684 |
+
inference_result_memory = copy.deepcopy(result_dict)
|
685 |
+
train_result_time = copy.deepcopy(result_dict)
|
686 |
+
train_result_memory = copy.deepcopy(result_dict)
|
687 |
+
|
688 |
+
for c, model_name in enumerate(self.args.model_names):
|
689 |
+
self.print_fn(f"{c + 1} / {len(self.args.model_names)}")
|
690 |
+
|
691 |
+
model_dict = {
|
692 |
+
"bs": self.args.batch_sizes,
|
693 |
+
"ss": self.args.sequence_lengths,
|
694 |
+
"result": {i: {} for i in self.args.batch_sizes},
|
695 |
+
}
|
696 |
+
inference_result_time[model_name] = copy.deepcopy(model_dict)
|
697 |
+
inference_result_memory[model_name] = copy.deepcopy(model_dict)
|
698 |
+
train_result_time[model_name] = copy.deepcopy(model_dict)
|
699 |
+
train_result_memory[model_name] = copy.deepcopy(model_dict)
|
700 |
+
|
701 |
+
inference_summary = train_summary = None
|
702 |
+
|
703 |
+
for batch_size in self.args.batch_sizes:
|
704 |
+
for sequence_length in self.args.sequence_lengths:
|
705 |
+
if self.args.inference:
|
706 |
+
if self.args.memory:
|
707 |
+
memory, inference_summary = self.inference_memory(model_name, batch_size, sequence_length)
|
708 |
+
inference_result_memory[model_name]["result"][batch_size][sequence_length] = memory
|
709 |
+
if self.args.speed:
|
710 |
+
time = self.inference_speed(model_name, batch_size, sequence_length)
|
711 |
+
inference_result_time[model_name]["result"][batch_size][sequence_length] = time
|
712 |
+
|
713 |
+
if self.args.training:
|
714 |
+
if self.args.memory:
|
715 |
+
memory, train_summary = self.train_memory(model_name, batch_size, sequence_length)
|
716 |
+
train_result_memory[model_name]["result"][batch_size][sequence_length] = memory
|
717 |
+
if self.args.speed:
|
718 |
+
time = self.train_speed(model_name, batch_size, sequence_length)
|
719 |
+
train_result_time[model_name]["result"][batch_size][sequence_length] = time
|
720 |
+
|
721 |
+
if self.args.inference:
|
722 |
+
if self.args.speed:
|
723 |
+
self.print_fn("\n" + 20 * "=" + ("INFERENCE - SPEED - RESULT").center(40) + 20 * "=")
|
724 |
+
self.print_results(inference_result_time, type_label="Time in s")
|
725 |
+
self.save_to_csv(inference_result_time, self.args.inference_time_csv_file)
|
726 |
+
if self.args.is_tpu:
|
727 |
+
self.print_fn(
|
728 |
+
"TPU was used for inference. Note that the time after compilation stabilized (after ~10 inferences model.forward(..) calls) was measured."
|
729 |
+
)
|
730 |
+
|
731 |
+
if self.args.memory:
|
732 |
+
self.print_fn("\n" + 20 * "=" + ("INFERENCE - MEMORY - RESULT").center(40) + 20 * "=")
|
733 |
+
self.print_results(inference_result_memory, type_label="Memory in MB")
|
734 |
+
self.save_to_csv(inference_result_memory, self.args.inference_memory_csv_file)
|
735 |
+
|
736 |
+
if self.args.trace_memory_line_by_line:
|
737 |
+
self.print_fn("\n" + 20 * "=" + ("INFERENCE - MEMOMRY - LINE BY LINE - SUMMARY").center(40) + 20 * "=")
|
738 |
+
self.print_memory_trace_statistics(inference_summary)
|
739 |
+
|
740 |
+
if self.args.training:
|
741 |
+
if self.args.speed:
|
742 |
+
self.print_fn("\n" + 20 * "=" + ("TRAIN - SPEED - RESULTS").center(40) + 20 * "=")
|
743 |
+
self.print_results(train_result_time, "Time in s")
|
744 |
+
self.save_to_csv(train_result_time, self.args.train_time_csv_file)
|
745 |
+
if self.args.is_tpu:
|
746 |
+
self.print_fn(
|
747 |
+
"TPU was used for training. Note that the time after compilation stabilized (after ~10 train loss=model.forward(...) + loss.backward() calls) was measured."
|
748 |
+
)
|
749 |
+
|
750 |
+
if self.args.memory:
|
751 |
+
self.print_fn("\n" + 20 * "=" + ("TRAIN - MEMORY - RESULTS").center(40) + 20 * "=")
|
752 |
+
self.print_results(train_result_memory, type_label="Memory in MB")
|
753 |
+
self.save_to_csv(train_result_memory, self.args.train_memory_csv_file)
|
754 |
+
|
755 |
+
if self.args.trace_memory_line_by_line:
|
756 |
+
self.print_fn("\n" + 20 * "=" + ("TRAIN - MEMOMRY - LINE BY LINE - SUMMARY").center(40) + 20 * "=")
|
757 |
+
self.print_memory_trace_statistics(train_summary)
|
758 |
+
|
759 |
+
if self.args.env_print:
|
760 |
+
self.print_fn("\n" + 20 * "=" + ("ENVIRONMENT INFORMATION").center(40) + 20 * "=")
|
761 |
+
self.print_fn("\n".join([f"- {prop}: {val}" for prop, val in self.environment_info.items()]) + "\n")
|
762 |
+
|
763 |
+
if self.args.save_to_csv:
|
764 |
+
with open(self.args.env_info_csv_file, mode="w", newline="") as csv_file:
|
765 |
+
writer = csv.writer(csv_file)
|
766 |
+
for key, value in self.environment_info.items():
|
767 |
+
writer.writerow([key, value])
|
768 |
+
|
769 |
+
return BenchmarkOutput(
|
770 |
+
inference_result_time,
|
771 |
+
inference_result_memory,
|
772 |
+
train_result_time,
|
773 |
+
train_result_memory,
|
774 |
+
inference_summary,
|
775 |
+
train_summary,
|
776 |
+
)
|
777 |
+
|
778 |
+
@property
|
779 |
+
def environment_info(self):
|
780 |
+
if self._environment_info is None:
|
781 |
+
info = {}
|
782 |
+
info["transformers_version"] = version
|
783 |
+
info["framework"] = self.framework
|
784 |
+
if self.framework == "PyTorch":
|
785 |
+
info["use_torchscript"] = self.args.torchscript
|
786 |
+
if self.framework == "TensorFlow":
|
787 |
+
info["eager_mode"] = self.args.eager_mode
|
788 |
+
info["use_xla"] = self.args.use_xla
|
789 |
+
info["framework_version"] = self.framework_version
|
790 |
+
info["python_version"] = platform.python_version()
|
791 |
+
info["system"] = platform.system()
|
792 |
+
info["cpu"] = platform.processor()
|
793 |
+
info["architecture"] = platform.architecture()[0]
|
794 |
+
info["date"] = datetime.date(datetime.now())
|
795 |
+
info["time"] = datetime.time(datetime.now())
|
796 |
+
info["fp16"] = self.args.fp16
|
797 |
+
info["use_multiprocessing"] = self.args.do_multi_processing
|
798 |
+
info["only_pretrain_model"] = self.args.only_pretrain_model
|
799 |
+
|
800 |
+
if is_psutil_available():
|
801 |
+
info["cpu_ram_mb"] = bytes_to_mega_bytes(psutil.virtual_memory().total)
|
802 |
+
else:
|
803 |
+
logger.warning(
|
804 |
+
"Psutil not installed, we won't log available CPU memory."
|
805 |
+
"Install psutil (pip install psutil) to log available CPU memory."
|
806 |
+
)
|
807 |
+
info["cpu_ram_mb"] = "N/A"
|
808 |
+
|
809 |
+
info["use_gpu"] = self.args.is_gpu
|
810 |
+
if self.args.is_gpu:
|
811 |
+
info["num_gpus"] = 1 # TODO(PVP) Currently only single GPU is supported
|
812 |
+
if is_py3nvml_available():
|
813 |
+
nvml.nvmlInit()
|
814 |
+
handle = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx)
|
815 |
+
info["gpu"] = nvml.nvmlDeviceGetName(handle)
|
816 |
+
info["gpu_ram_mb"] = bytes_to_mega_bytes(nvml.nvmlDeviceGetMemoryInfo(handle).total)
|
817 |
+
info["gpu_power_watts"] = nvml.nvmlDeviceGetPowerManagementLimit(handle) / 1000
|
818 |
+
info["gpu_performance_state"] = nvml.nvmlDeviceGetPerformanceState(handle)
|
819 |
+
nvml.nvmlShutdown()
|
820 |
+
else:
|
821 |
+
logger.warning(
|
822 |
+
"py3nvml not installed, we won't log GPU memory usage. "
|
823 |
+
"Install py3nvml (pip install py3nvml) to log information about GPU."
|
824 |
+
)
|
825 |
+
info["gpu"] = "N/A"
|
826 |
+
info["gpu_ram_mb"] = "N/A"
|
827 |
+
info["gpu_power_watts"] = "N/A"
|
828 |
+
info["gpu_performance_state"] = "N/A"
|
829 |
+
|
830 |
+
info["use_tpu"] = self.args.is_tpu
|
831 |
+
# TODO(PVP): See if we can add more information about TPU
|
832 |
+
# see: https://github.com/pytorch/xla/issues/2180
|
833 |
+
|
834 |
+
self._environment_info = info
|
835 |
+
return self._environment_info
|
836 |
+
|
837 |
+
def print_results(self, result_dict, type_label):
|
838 |
+
self.print_fn(80 * "-")
|
839 |
+
self.print_fn(
|
840 |
+
"Model Name".center(30) + "Batch Size".center(15) + "Seq Length".center(15) + type_label.center(15)
|
841 |
+
)
|
842 |
+
self.print_fn(80 * "-")
|
843 |
+
for model_name in self.args.model_names:
|
844 |
+
for batch_size in result_dict[model_name]["bs"]:
|
845 |
+
for sequence_length in result_dict[model_name]["ss"]:
|
846 |
+
result = result_dict[model_name]["result"][batch_size][sequence_length]
|
847 |
+
if isinstance(result, float):
|
848 |
+
result = round(1000 * result) / 1000
|
849 |
+
result = "< 0.001" if result == 0.0 else str(result)
|
850 |
+
else:
|
851 |
+
result = str(result)
|
852 |
+
self.print_fn(
|
853 |
+
model_name[:30].center(30) + str(batch_size).center(15),
|
854 |
+
str(sequence_length).center(15),
|
855 |
+
result.center(15),
|
856 |
+
)
|
857 |
+
self.print_fn(80 * "-")
|
858 |
+
|
859 |
+
def print_memory_trace_statistics(self, summary: MemorySummary):
|
860 |
+
self.print_fn(
|
861 |
+
"\nLine by line memory consumption:\n"
|
862 |
+
+ "\n".join(
|
863 |
+
f"{state.frame.filename}:{state.frame.line_number}: mem {state.cpu_gpu}: {state.frame.line_text}"
|
864 |
+
for state in summary.sequential
|
865 |
+
)
|
866 |
+
)
|
867 |
+
self.print_fn(
|
868 |
+
"\nLines with top memory consumption:\n"
|
869 |
+
+ "\n".join(
|
870 |
+
f"=> {state.frame.filename}:{state.frame.line_number}: mem {state.cpu_gpu}: {state.frame.line_text}"
|
871 |
+
for state in summary.cumulative[:6]
|
872 |
+
)
|
873 |
+
)
|
874 |
+
self.print_fn(
|
875 |
+
"\nLines with lowest memory consumption:\n"
|
876 |
+
+ "\n".join(
|
877 |
+
f"=> {state.frame.filename}:{state.frame.line_number}: mem {state.cpu_gpu}: {state.frame.line_text}"
|
878 |
+
for state in summary.cumulative[-6:]
|
879 |
+
)
|
880 |
+
)
|
881 |
+
self.print_fn(f"\nTotal memory increase: {summary.total}")
|
882 |
+
|
883 |
+
def save_to_csv(self, result_dict, filename):
|
884 |
+
if not self.args.save_to_csv:
|
885 |
+
return
|
886 |
+
self.print_fn("Saving results to csv.")
|
887 |
+
with open(filename, mode="w") as csv_file:
|
888 |
+
|
889 |
+
assert len(self.args.model_names) > 0, f"At least 1 model should be defined, but got {self.model_names}"
|
890 |
+
|
891 |
+
fieldnames = ["model", "batch_size", "sequence_length"]
|
892 |
+
writer = csv.DictWriter(csv_file, fieldnames=fieldnames + ["result"])
|
893 |
+
writer.writeheader()
|
894 |
+
|
895 |
+
for model_name in self.args.model_names:
|
896 |
+
result_dict_model = result_dict[model_name]["result"]
|
897 |
+
for bs in result_dict_model:
|
898 |
+
for ss in result_dict_model[bs]:
|
899 |
+
result_model = result_dict_model[bs][ss]
|
900 |
+
writer.writerow(
|
901 |
+
{
|
902 |
+
"model": model_name,
|
903 |
+
"batch_size": bs,
|
904 |
+
"sequence_length": ss,
|
905 |
+
"result": ("{}" if not isinstance(result_model, float) else "{:.4f}").format(
|
906 |
+
result_model
|
907 |
+
),
|
908 |
+
}
|
909 |
+
)
|
public/gpt-2/transformers/commands/__init__.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from abc import ABC, abstractmethod
|
16 |
+
from argparse import ArgumentParser
|
17 |
+
|
18 |
+
|
19 |
+
class BaseTransformersCLICommand(ABC):
|
20 |
+
@staticmethod
|
21 |
+
@abstractmethod
|
22 |
+
def register_subcommand(parser: ArgumentParser):
|
23 |
+
raise NotImplementedError()
|
24 |
+
|
25 |
+
@abstractmethod
|
26 |
+
def run(self):
|
27 |
+
raise NotImplementedError()
|
public/gpt-2/transformers/commands/add_new_model.py
ADDED
@@ -0,0 +1,228 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import json
|
16 |
+
import os
|
17 |
+
import shutil
|
18 |
+
from argparse import ArgumentParser, Namespace
|
19 |
+
from pathlib import Path
|
20 |
+
from typing import List
|
21 |
+
|
22 |
+
from ..utils import logging
|
23 |
+
from . import BaseTransformersCLICommand
|
24 |
+
|
25 |
+
|
26 |
+
try:
|
27 |
+
from cookiecutter.main import cookiecutter
|
28 |
+
|
29 |
+
_has_cookiecutter = True
|
30 |
+
except ImportError:
|
31 |
+
_has_cookiecutter = False
|
32 |
+
|
33 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
34 |
+
|
35 |
+
|
36 |
+
def add_new_model_command_factory(args: Namespace):
|
37 |
+
return AddNewModelCommand(args.testing, args.testing_file, path=args.path)
|
38 |
+
|
39 |
+
|
40 |
+
class AddNewModelCommand(BaseTransformersCLICommand):
|
41 |
+
@staticmethod
|
42 |
+
def register_subcommand(parser: ArgumentParser):
|
43 |
+
add_new_model_parser = parser.add_parser("add-new-model")
|
44 |
+
add_new_model_parser.add_argument("--testing", action="store_true", help="If in testing mode.")
|
45 |
+
add_new_model_parser.add_argument("--testing_file", type=str, help="Configuration file on which to run.")
|
46 |
+
add_new_model_parser.add_argument(
|
47 |
+
"--path", type=str, help="Path to cookiecutter. Should only be used for testing purposes."
|
48 |
+
)
|
49 |
+
add_new_model_parser.set_defaults(func=add_new_model_command_factory)
|
50 |
+
|
51 |
+
def __init__(self, testing: bool, testing_file: str, path=None, *args):
|
52 |
+
self._testing = testing
|
53 |
+
self._testing_file = testing_file
|
54 |
+
self._path = path
|
55 |
+
|
56 |
+
def run(self):
|
57 |
+
if not _has_cookiecutter:
|
58 |
+
raise ImportError(
|
59 |
+
"Model creation dependencies are required to use the `add_new_model` command. Install them by running "
|
60 |
+
"the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n"
|
61 |
+
)
|
62 |
+
# Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory
|
63 |
+
directories = [directory for directory in os.listdir() if "cookiecutter-template-" == directory[:22]]
|
64 |
+
if len(directories) > 0:
|
65 |
+
raise ValueError(
|
66 |
+
"Several directories starting with `cookiecutter-template-` in current working directory. "
|
67 |
+
"Please clean your directory by removing all folders starting with `cookiecutter-template-` or "
|
68 |
+
"change your working directory."
|
69 |
+
)
|
70 |
+
|
71 |
+
path_to_transformer_root = (
|
72 |
+
Path(__file__).parent.parent.parent.parent if self._path is None else Path(self._path).parent.parent
|
73 |
+
)
|
74 |
+
path_to_cookiecutter = path_to_transformer_root / "templates" / "adding_a_new_model"
|
75 |
+
|
76 |
+
# Execute cookiecutter
|
77 |
+
if not self._testing:
|
78 |
+
cookiecutter(str(path_to_cookiecutter))
|
79 |
+
else:
|
80 |
+
with open(self._testing_file, "r") as configuration_file:
|
81 |
+
testing_configuration = json.load(configuration_file)
|
82 |
+
|
83 |
+
cookiecutter(
|
84 |
+
str(path_to_cookiecutter if self._path is None else self._path),
|
85 |
+
no_input=True,
|
86 |
+
extra_context=testing_configuration,
|
87 |
+
)
|
88 |
+
|
89 |
+
directory = [directory for directory in os.listdir() if "cookiecutter-template-" in directory[:22]][0]
|
90 |
+
|
91 |
+
# Retrieve configuration
|
92 |
+
with open(directory + "/configuration.json", "r") as configuration_file:
|
93 |
+
configuration = json.load(configuration_file)
|
94 |
+
|
95 |
+
lowercase_model_name = configuration["lowercase_modelname"]
|
96 |
+
pytorch_or_tensorflow = configuration["generate_tensorflow_and_pytorch"]
|
97 |
+
os.remove(f"{directory}/configuration.json")
|
98 |
+
|
99 |
+
output_pytorch = "PyTorch" in pytorch_or_tensorflow
|
100 |
+
output_tensorflow = "TensorFlow" in pytorch_or_tensorflow
|
101 |
+
|
102 |
+
model_dir = f"{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}"
|
103 |
+
os.makedirs(model_dir, exist_ok=True)
|
104 |
+
|
105 |
+
shutil.move(
|
106 |
+
f"{directory}/__init__.py",
|
107 |
+
f"{model_dir}/__init__.py",
|
108 |
+
)
|
109 |
+
shutil.move(
|
110 |
+
f"{directory}/configuration_{lowercase_model_name}.py",
|
111 |
+
f"{model_dir}/configuration_{lowercase_model_name}.py",
|
112 |
+
)
|
113 |
+
|
114 |
+
def remove_copy_lines(path):
|
115 |
+
with open(path, "r") as f:
|
116 |
+
lines = f.readlines()
|
117 |
+
with open(path, "w") as f:
|
118 |
+
for line in lines:
|
119 |
+
if "# Copied from transformers." not in line:
|
120 |
+
f.write(line)
|
121 |
+
|
122 |
+
if output_pytorch:
|
123 |
+
if not self._testing:
|
124 |
+
remove_copy_lines(f"{directory}/modeling_{lowercase_model_name}.py")
|
125 |
+
|
126 |
+
shutil.move(
|
127 |
+
f"{directory}/modeling_{lowercase_model_name}.py",
|
128 |
+
f"{model_dir}/modeling_{lowercase_model_name}.py",
|
129 |
+
)
|
130 |
+
|
131 |
+
shutil.move(
|
132 |
+
f"{directory}/test_modeling_{lowercase_model_name}.py",
|
133 |
+
f"{path_to_transformer_root}/tests/test_modeling_{lowercase_model_name}.py",
|
134 |
+
)
|
135 |
+
else:
|
136 |
+
os.remove(f"{directory}/modeling_{lowercase_model_name}.py")
|
137 |
+
os.remove(f"{directory}/test_modeling_{lowercase_model_name}.py")
|
138 |
+
|
139 |
+
if output_tensorflow:
|
140 |
+
if not self._testing:
|
141 |
+
remove_copy_lines(f"{directory}/modeling_tf_{lowercase_model_name}.py")
|
142 |
+
|
143 |
+
shutil.move(
|
144 |
+
f"{directory}/modeling_tf_{lowercase_model_name}.py",
|
145 |
+
f"{model_dir}/modeling_tf_{lowercase_model_name}.py",
|
146 |
+
)
|
147 |
+
|
148 |
+
shutil.move(
|
149 |
+
f"{directory}/test_modeling_tf_{lowercase_model_name}.py",
|
150 |
+
f"{path_to_transformer_root}/tests/test_modeling_tf_{lowercase_model_name}.py",
|
151 |
+
)
|
152 |
+
else:
|
153 |
+
os.remove(f"{directory}/modeling_tf_{lowercase_model_name}.py")
|
154 |
+
os.remove(f"{directory}/test_modeling_tf_{lowercase_model_name}.py")
|
155 |
+
|
156 |
+
shutil.move(
|
157 |
+
f"{directory}/{lowercase_model_name}.rst",
|
158 |
+
f"{path_to_transformer_root}/docs/source/model_doc/{lowercase_model_name}.rst",
|
159 |
+
)
|
160 |
+
|
161 |
+
shutil.move(
|
162 |
+
f"{directory}/tokenization_{lowercase_model_name}.py",
|
163 |
+
f"{model_dir}/tokenization_{lowercase_model_name}.py",
|
164 |
+
)
|
165 |
+
|
166 |
+
shutil.move(
|
167 |
+
f"{directory}/tokenization_fast_{lowercase_model_name}.py",
|
168 |
+
f"{model_dir}/tokenization_{lowercase_model_name}_fast.py",
|
169 |
+
)
|
170 |
+
|
171 |
+
from os import fdopen, remove
|
172 |
+
from shutil import copymode, move
|
173 |
+
from tempfile import mkstemp
|
174 |
+
|
175 |
+
def replace(original_file: str, line_to_copy_below: str, lines_to_copy: List[str]):
|
176 |
+
# Create temp file
|
177 |
+
fh, abs_path = mkstemp()
|
178 |
+
line_found = False
|
179 |
+
with fdopen(fh, "w") as new_file:
|
180 |
+
with open(original_file) as old_file:
|
181 |
+
for line in old_file:
|
182 |
+
new_file.write(line)
|
183 |
+
if line_to_copy_below in line:
|
184 |
+
line_found = True
|
185 |
+
for line_to_copy in lines_to_copy:
|
186 |
+
new_file.write(line_to_copy)
|
187 |
+
|
188 |
+
if not line_found:
|
189 |
+
raise ValueError(f"Line {line_to_copy_below} was not found in file.")
|
190 |
+
|
191 |
+
# Copy the file permissions from the old file to the new file
|
192 |
+
copymode(original_file, abs_path)
|
193 |
+
# Remove original file
|
194 |
+
remove(original_file)
|
195 |
+
# Move new file
|
196 |
+
move(abs_path, original_file)
|
197 |
+
|
198 |
+
def skip_units(line):
|
199 |
+
return ("generating PyTorch" in line and not output_pytorch) or (
|
200 |
+
"generating TensorFlow" in line and not output_tensorflow
|
201 |
+
)
|
202 |
+
|
203 |
+
def replace_in_files(path_to_datafile):
|
204 |
+
with open(path_to_datafile) as datafile:
|
205 |
+
lines_to_copy = []
|
206 |
+
skip_file = False
|
207 |
+
skip_snippet = False
|
208 |
+
for line in datafile:
|
209 |
+
if "# To replace in: " in line and "##" not in line:
|
210 |
+
file_to_replace_in = line.split('"')[1]
|
211 |
+
skip_file = skip_units(line)
|
212 |
+
elif "# Below: " in line and "##" not in line:
|
213 |
+
line_to_copy_below = line.split('"')[1]
|
214 |
+
skip_snippet = skip_units(line)
|
215 |
+
elif "# End." in line and "##" not in line:
|
216 |
+
if not skip_file and not skip_snippet:
|
217 |
+
replace(file_to_replace_in, line_to_copy_below, lines_to_copy)
|
218 |
+
|
219 |
+
lines_to_copy = []
|
220 |
+
elif "# Replace with" in line and "##" not in line:
|
221 |
+
lines_to_copy = []
|
222 |
+
elif "##" not in line:
|
223 |
+
lines_to_copy.append(line)
|
224 |
+
|
225 |
+
remove(path_to_datafile)
|
226 |
+
|
227 |
+
replace_in_files(f"{directory}/to_replace_{lowercase_model_name}.py")
|
228 |
+
os.rmdir(directory)
|
public/gpt-2/transformers/commands/convert.py
ADDED
@@ -0,0 +1,179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from argparse import ArgumentParser, Namespace
|
16 |
+
|
17 |
+
from ..utils import logging
|
18 |
+
from . import BaseTransformersCLICommand
|
19 |
+
|
20 |
+
|
21 |
+
def convert_command_factory(args: Namespace):
|
22 |
+
"""
|
23 |
+
Factory function used to convert a model TF 1.0 checkpoint in a PyTorch checkpoint.
|
24 |
+
|
25 |
+
Returns: ServeCommand
|
26 |
+
"""
|
27 |
+
return ConvertCommand(
|
28 |
+
args.model_type, args.tf_checkpoint, args.pytorch_dump_output, args.config, args.finetuning_task_name
|
29 |
+
)
|
30 |
+
|
31 |
+
|
32 |
+
IMPORT_ERROR_MESSAGE = """
|
33 |
+
transformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires
|
34 |
+
TensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.
|
35 |
+
"""
|
36 |
+
|
37 |
+
|
38 |
+
class ConvertCommand(BaseTransformersCLICommand):
|
39 |
+
@staticmethod
|
40 |
+
def register_subcommand(parser: ArgumentParser):
|
41 |
+
"""
|
42 |
+
Register this command to argparse so it's available for the transformer-cli
|
43 |
+
|
44 |
+
Args:
|
45 |
+
parser: Root parser to register command-specific arguments
|
46 |
+
"""
|
47 |
+
train_parser = parser.add_parser(
|
48 |
+
"convert",
|
49 |
+
help="CLI tool to run convert model from original "
|
50 |
+
"author checkpoints to Transformers PyTorch checkpoints.",
|
51 |
+
)
|
52 |
+
train_parser.add_argument("--model_type", type=str, required=True, help="Model's type.")
|
53 |
+
train_parser.add_argument(
|
54 |
+
"--tf_checkpoint", type=str, required=True, help="TensorFlow checkpoint path or folder."
|
55 |
+
)
|
56 |
+
train_parser.add_argument(
|
57 |
+
"--pytorch_dump_output", type=str, required=True, help="Path to the PyTorch saved model output."
|
58 |
+
)
|
59 |
+
train_parser.add_argument("--config", type=str, default="", help="Configuration file path or folder.")
|
60 |
+
train_parser.add_argument(
|
61 |
+
"--finetuning_task_name",
|
62 |
+
type=str,
|
63 |
+
default=None,
|
64 |
+
help="Optional fine-tuning task name if the TF model was a finetuned model.",
|
65 |
+
)
|
66 |
+
train_parser.set_defaults(func=convert_command_factory)
|
67 |
+
|
68 |
+
def __init__(
|
69 |
+
self,
|
70 |
+
model_type: str,
|
71 |
+
tf_checkpoint: str,
|
72 |
+
pytorch_dump_output: str,
|
73 |
+
config: str,
|
74 |
+
finetuning_task_name: str,
|
75 |
+
*args
|
76 |
+
):
|
77 |
+
self._logger = logging.get_logger("transformers-cli/converting")
|
78 |
+
|
79 |
+
self._logger.info(f"Loading model {model_type}")
|
80 |
+
self._model_type = model_type
|
81 |
+
self._tf_checkpoint = tf_checkpoint
|
82 |
+
self._pytorch_dump_output = pytorch_dump_output
|
83 |
+
self._config = config
|
84 |
+
self._finetuning_task_name = finetuning_task_name
|
85 |
+
|
86 |
+
def run(self):
|
87 |
+
if self._model_type == "albert":
|
88 |
+
try:
|
89 |
+
from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import (
|
90 |
+
convert_tf_checkpoint_to_pytorch,
|
91 |
+
)
|
92 |
+
except ImportError:
|
93 |
+
raise ImportError(IMPORT_ERROR_MESSAGE)
|
94 |
+
|
95 |
+
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output)
|
96 |
+
elif self._model_type == "bert":
|
97 |
+
try:
|
98 |
+
from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import (
|
99 |
+
convert_tf_checkpoint_to_pytorch,
|
100 |
+
)
|
101 |
+
except ImportError:
|
102 |
+
raise ImportError(IMPORT_ERROR_MESSAGE)
|
103 |
+
|
104 |
+
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output)
|
105 |
+
elif self._model_type == "funnel":
|
106 |
+
try:
|
107 |
+
from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import (
|
108 |
+
convert_tf_checkpoint_to_pytorch,
|
109 |
+
)
|
110 |
+
except ImportError:
|
111 |
+
raise ImportError(IMPORT_ERROR_MESSAGE)
|
112 |
+
|
113 |
+
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output)
|
114 |
+
elif self._model_type == "t5":
|
115 |
+
try:
|
116 |
+
from ..models.t5.convert_t5_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch
|
117 |
+
except ImportError:
|
118 |
+
raise ImportError(IMPORT_ERROR_MESSAGE)
|
119 |
+
|
120 |
+
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output)
|
121 |
+
elif self._model_type == "gpt":
|
122 |
+
from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import (
|
123 |
+
convert_openai_checkpoint_to_pytorch,
|
124 |
+
)
|
125 |
+
|
126 |
+
convert_openai_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output)
|
127 |
+
elif self._model_type == "transfo_xl":
|
128 |
+
try:
|
129 |
+
from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import (
|
130 |
+
convert_transfo_xl_checkpoint_to_pytorch,
|
131 |
+
)
|
132 |
+
except ImportError:
|
133 |
+
raise ImportError(IMPORT_ERROR_MESSAGE)
|
134 |
+
|
135 |
+
if "ckpt" in self._tf_checkpoint.lower():
|
136 |
+
TF_CHECKPOINT = self._tf_checkpoint
|
137 |
+
TF_DATASET_FILE = ""
|
138 |
+
else:
|
139 |
+
TF_DATASET_FILE = self._tf_checkpoint
|
140 |
+
TF_CHECKPOINT = ""
|
141 |
+
convert_transfo_xl_checkpoint_to_pytorch(
|
142 |
+
TF_CHECKPOINT, self._config, self._pytorch_dump_output, TF_DATASET_FILE
|
143 |
+
)
|
144 |
+
elif self._model_type == "gpt2":
|
145 |
+
try:
|
146 |
+
from ..models.gpt2.convert_gpt2_original_tf_checkpoint_to_pytorch import (
|
147 |
+
convert_gpt2_checkpoint_to_pytorch,
|
148 |
+
)
|
149 |
+
except ImportError:
|
150 |
+
raise ImportError(IMPORT_ERROR_MESSAGE)
|
151 |
+
|
152 |
+
convert_gpt2_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output)
|
153 |
+
elif self._model_type == "xlnet":
|
154 |
+
try:
|
155 |
+
from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import (
|
156 |
+
convert_xlnet_checkpoint_to_pytorch,
|
157 |
+
)
|
158 |
+
except ImportError:
|
159 |
+
raise ImportError(IMPORT_ERROR_MESSAGE)
|
160 |
+
|
161 |
+
convert_xlnet_checkpoint_to_pytorch(
|
162 |
+
self._tf_checkpoint, self._config, self._pytorch_dump_output, self._finetuning_task_name
|
163 |
+
)
|
164 |
+
elif self._model_type == "xlm":
|
165 |
+
from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import (
|
166 |
+
convert_xlm_checkpoint_to_pytorch,
|
167 |
+
)
|
168 |
+
|
169 |
+
convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint, self._pytorch_dump_output)
|
170 |
+
elif self._model_type == "lxmert":
|
171 |
+
from ..models.lxmert.convert_lxmert_original_pytorch_checkpoint_to_pytorch import (
|
172 |
+
convert_lxmert_checkpoint_to_pytorch,
|
173 |
+
)
|
174 |
+
|
175 |
+
convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint, self._pytorch_dump_output)
|
176 |
+
else:
|
177 |
+
raise ValueError(
|
178 |
+
"--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]"
|
179 |
+
)
|
public/gpt-2/transformers/commands/download.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from argparse import ArgumentParser
|
16 |
+
|
17 |
+
from . import BaseTransformersCLICommand
|
18 |
+
|
19 |
+
|
20 |
+
def download_command_factory(args):
|
21 |
+
return DownloadCommand(args.model, args.cache_dir, args.force)
|
22 |
+
|
23 |
+
|
24 |
+
class DownloadCommand(BaseTransformersCLICommand):
|
25 |
+
@staticmethod
|
26 |
+
def register_subcommand(parser: ArgumentParser):
|
27 |
+
download_parser = parser.add_parser("download")
|
28 |
+
download_parser.add_argument(
|
29 |
+
"--cache-dir", type=str, default=None, help="Path to location to store the models"
|
30 |
+
)
|
31 |
+
download_parser.add_argument(
|
32 |
+
"--force", action="store_true", help="Force the model to be download even if already in cache-dir"
|
33 |
+
)
|
34 |
+
download_parser.add_argument("model", type=str, help="Name of the model to download")
|
35 |
+
download_parser.set_defaults(func=download_command_factory)
|
36 |
+
|
37 |
+
def __init__(self, model: str, cache: str, force: bool):
|
38 |
+
self._model = model
|
39 |
+
self._cache = cache
|
40 |
+
self._force = force
|
41 |
+
|
42 |
+
def run(self):
|
43 |
+
from ..models.auto import AutoModel, AutoTokenizer
|
44 |
+
|
45 |
+
AutoModel.from_pretrained(self._model, cache_dir=self._cache, force_download=self._force)
|
46 |
+
AutoTokenizer.from_pretrained(self._model, cache_dir=self._cache, force_download=self._force)
|
public/gpt-2/transformers/commands/env.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import platform
|
16 |
+
from argparse import ArgumentParser
|
17 |
+
|
18 |
+
from .. import __version__ as version
|
19 |
+
from ..file_utils import is_flax_available, is_tf_available, is_torch_available
|
20 |
+
from . import BaseTransformersCLICommand
|
21 |
+
|
22 |
+
|
23 |
+
def info_command_factory(_):
|
24 |
+
return EnvironmentCommand()
|
25 |
+
|
26 |
+
|
27 |
+
class EnvironmentCommand(BaseTransformersCLICommand):
|
28 |
+
@staticmethod
|
29 |
+
def register_subcommand(parser: ArgumentParser):
|
30 |
+
download_parser = parser.add_parser("env")
|
31 |
+
download_parser.set_defaults(func=info_command_factory)
|
32 |
+
|
33 |
+
def run(self):
|
34 |
+
pt_version = "not installed"
|
35 |
+
pt_cuda_available = "NA"
|
36 |
+
if is_torch_available():
|
37 |
+
import torch
|
38 |
+
|
39 |
+
pt_version = torch.__version__
|
40 |
+
pt_cuda_available = torch.cuda.is_available()
|
41 |
+
|
42 |
+
tf_version = "not installed"
|
43 |
+
tf_cuda_available = "NA"
|
44 |
+
if is_tf_available():
|
45 |
+
import tensorflow as tf
|
46 |
+
|
47 |
+
tf_version = tf.__version__
|
48 |
+
try:
|
49 |
+
# deprecated in v2.1
|
50 |
+
tf_cuda_available = tf.test.is_gpu_available()
|
51 |
+
except AttributeError:
|
52 |
+
# returns list of devices, convert to bool
|
53 |
+
tf_cuda_available = bool(tf.config.list_physical_devices("GPU"))
|
54 |
+
|
55 |
+
flax_version = "not installed"
|
56 |
+
jax_version = "not installed"
|
57 |
+
jaxlib_version = "not installed"
|
58 |
+
jax_backend = "NA"
|
59 |
+
if is_flax_available():
|
60 |
+
import flax
|
61 |
+
import jax
|
62 |
+
import jaxlib
|
63 |
+
|
64 |
+
flax_version = flax.__version__
|
65 |
+
jax_version = jax.__version__
|
66 |
+
jaxlib_version = jaxlib.__version__
|
67 |
+
jax_backend = jax.lib.xla_bridge.get_backend().platform
|
68 |
+
|
69 |
+
info = {
|
70 |
+
"`transformers` version": version,
|
71 |
+
"Platform": platform.platform(),
|
72 |
+
"Python version": platform.python_version(),
|
73 |
+
"PyTorch version (GPU?)": f"{pt_version} ({pt_cuda_available})",
|
74 |
+
"Tensorflow version (GPU?)": f"{tf_version} ({tf_cuda_available})",
|
75 |
+
"Flax version (CPU?/GPU?/TPU?)": f"{flax_version} ({jax_backend})",
|
76 |
+
"Jax version": f"{jax_version}",
|
77 |
+
"JaxLib version": f"{jaxlib_version}",
|
78 |
+
"Using GPU in script?": "<fill in>",
|
79 |
+
"Using distributed or parallel set-up in script?": "<fill in>",
|
80 |
+
}
|
81 |
+
|
82 |
+
print("\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n")
|
83 |
+
print(self.format_dict(info))
|
84 |
+
|
85 |
+
return info
|
86 |
+
|
87 |
+
@staticmethod
|
88 |
+
def format_dict(d):
|
89 |
+
return "\n".join([f"- {prop}: {val}" for prop, val in d.items()]) + "\n"
|
public/gpt-2/transformers/commands/lfs.py
ADDED
@@ -0,0 +1,227 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Implementation of a custom transfer agent for the transfer type "multipart" for git-lfs.
|
3 |
+
|
4 |
+
Inspired by: github.com/cbartz/git-lfs-swift-transfer-agent/blob/master/git_lfs_swift_transfer.py
|
5 |
+
|
6 |
+
Spec is: github.com/git-lfs/git-lfs/blob/master/docs/custom-transfers.md
|
7 |
+
|
8 |
+
|
9 |
+
To launch debugger while developing:
|
10 |
+
|
11 |
+
``` [lfs "customtransfer.multipart"]
|
12 |
+
|
13 |
+
path = /path/to/transformers/.env/bin/python
|
14 |
+
|
15 |
+
args = -m debugpy --listen 5678 --wait-for-client /path/to/transformers/src/transformers/commands/transformers_cli.py
|
16 |
+
lfs-multipart-upload ```
|
17 |
+
"""
|
18 |
+
|
19 |
+
import json
|
20 |
+
import os
|
21 |
+
import subprocess
|
22 |
+
import sys
|
23 |
+
import warnings
|
24 |
+
from argparse import ArgumentParser
|
25 |
+
from contextlib import AbstractContextManager
|
26 |
+
from typing import Dict, List, Optional
|
27 |
+
|
28 |
+
import requests
|
29 |
+
|
30 |
+
from ..utils import logging
|
31 |
+
from . import BaseTransformersCLICommand
|
32 |
+
|
33 |
+
|
34 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
35 |
+
|
36 |
+
|
37 |
+
LFS_MULTIPART_UPLOAD_COMMAND = "lfs-multipart-upload"
|
38 |
+
|
39 |
+
|
40 |
+
class LfsCommands(BaseTransformersCLICommand):
|
41 |
+
"""
|
42 |
+
Implementation of a custom transfer agent for the transfer type "multipart" for git-lfs. This lets users upload
|
43 |
+
large files >5GB 🔥. Spec for LFS custom transfer agent is:
|
44 |
+
https://github.com/git-lfs/git-lfs/blob/master/docs/custom-transfers.md
|
45 |
+
|
46 |
+
This introduces two commands to the CLI:
|
47 |
+
|
48 |
+
1. $ transformers-cli lfs-enable-largefiles
|
49 |
+
|
50 |
+
This should be executed once for each model repo that contains a model file >5GB. It's documented in the error
|
51 |
+
message you get if you just try to git push a 5GB file without having enabled it before.
|
52 |
+
|
53 |
+
2. $ transformers-cli lfs-multipart-upload
|
54 |
+
|
55 |
+
This command is called by lfs directly and is not meant to be called by the user.
|
56 |
+
"""
|
57 |
+
|
58 |
+
@staticmethod
|
59 |
+
def register_subcommand(parser: ArgumentParser):
|
60 |
+
enable_parser = parser.add_parser(
|
61 |
+
"lfs-enable-largefiles",
|
62 |
+
help="Deprecated: use `huggingface-cli` instead. "
|
63 |
+
"Configure your repository to enable upload of files > 5GB.",
|
64 |
+
)
|
65 |
+
enable_parser.add_argument("path", type=str, help="Local path to repository you want to configure.")
|
66 |
+
enable_parser.set_defaults(func=lambda args: LfsEnableCommand(args))
|
67 |
+
|
68 |
+
upload_parser = parser.add_parser(
|
69 |
+
LFS_MULTIPART_UPLOAD_COMMAND,
|
70 |
+
help="Deprecated: use `huggingface-cli` instead. "
|
71 |
+
"Command will get called by git-lfs, do not call it directly.",
|
72 |
+
)
|
73 |
+
upload_parser.set_defaults(func=lambda args: LfsUploadCommand(args))
|
74 |
+
|
75 |
+
|
76 |
+
class LfsEnableCommand:
|
77 |
+
def __init__(self, args):
|
78 |
+
self.args = args
|
79 |
+
|
80 |
+
def run(self):
|
81 |
+
warnings.warn(
|
82 |
+
"Managing repositories through transformers-cli is deprecated. Please use `huggingface-cli` instead."
|
83 |
+
)
|
84 |
+
local_path = os.path.abspath(self.args.path)
|
85 |
+
if not os.path.isdir(local_path):
|
86 |
+
print("This does not look like a valid git repo.")
|
87 |
+
exit(1)
|
88 |
+
subprocess.run(
|
89 |
+
"git config lfs.customtransfer.multipart.path transformers-cli".split(), check=True, cwd=local_path
|
90 |
+
)
|
91 |
+
subprocess.run(
|
92 |
+
f"git config lfs.customtransfer.multipart.args {LFS_MULTIPART_UPLOAD_COMMAND}".split(),
|
93 |
+
check=True,
|
94 |
+
cwd=local_path,
|
95 |
+
)
|
96 |
+
print("Local repo set up for largefiles")
|
97 |
+
|
98 |
+
|
99 |
+
def write_msg(msg: Dict):
|
100 |
+
"""Write out the message in Line delimited JSON."""
|
101 |
+
msg = json.dumps(msg) + "\n"
|
102 |
+
sys.stdout.write(msg)
|
103 |
+
sys.stdout.flush()
|
104 |
+
|
105 |
+
|
106 |
+
def read_msg() -> Optional[Dict]:
|
107 |
+
"""Read Line delimited JSON from stdin."""
|
108 |
+
msg = json.loads(sys.stdin.readline().strip())
|
109 |
+
|
110 |
+
if "terminate" in (msg.get("type"), msg.get("event")):
|
111 |
+
# terminate message received
|
112 |
+
return None
|
113 |
+
|
114 |
+
if msg.get("event") not in ("download", "upload"):
|
115 |
+
logger.critical("Received unexpected message")
|
116 |
+
sys.exit(1)
|
117 |
+
|
118 |
+
return msg
|
119 |
+
|
120 |
+
|
121 |
+
class FileSlice(AbstractContextManager):
|
122 |
+
"""
|
123 |
+
File-like object that only reads a slice of a file
|
124 |
+
|
125 |
+
Inspired by stackoverflow.com/a/29838711/593036
|
126 |
+
"""
|
127 |
+
|
128 |
+
def __init__(self, filepath: str, seek_from: int, read_limit: int):
|
129 |
+
self.filepath = filepath
|
130 |
+
self.seek_from = seek_from
|
131 |
+
self.read_limit = read_limit
|
132 |
+
self.n_seen = 0
|
133 |
+
|
134 |
+
def __enter__(self):
|
135 |
+
self.f = open(self.filepath, "rb")
|
136 |
+
self.f.seek(self.seek_from)
|
137 |
+
return self
|
138 |
+
|
139 |
+
def __len__(self):
|
140 |
+
total_length = os.fstat(self.f.fileno()).st_size
|
141 |
+
return min(self.read_limit, total_length - self.seek_from)
|
142 |
+
|
143 |
+
def read(self, n=-1):
|
144 |
+
if self.n_seen >= self.read_limit:
|
145 |
+
return b""
|
146 |
+
remaining_amount = self.read_limit - self.n_seen
|
147 |
+
data = self.f.read(remaining_amount if n < 0 else min(n, remaining_amount))
|
148 |
+
self.n_seen += len(data)
|
149 |
+
return data
|
150 |
+
|
151 |
+
def __iter__(self):
|
152 |
+
yield self.read(n=4 * 1024 * 1024)
|
153 |
+
|
154 |
+
def __exit__(self, *args):
|
155 |
+
self.f.close()
|
156 |
+
|
157 |
+
|
158 |
+
class LfsUploadCommand:
|
159 |
+
def __init__(self, args):
|
160 |
+
self.args = args
|
161 |
+
|
162 |
+
def run(self):
|
163 |
+
# Immediately after invoking a custom transfer process, git-lfs
|
164 |
+
# sends initiation data to the process over stdin.
|
165 |
+
# This tells the process useful information about the configuration.
|
166 |
+
init_msg = json.loads(sys.stdin.readline().strip())
|
167 |
+
if not (init_msg.get("event") == "init" and init_msg.get("operation") == "upload"):
|
168 |
+
write_msg({"error": {"code": 32, "message": "Wrong lfs init operation"}})
|
169 |
+
sys.exit(1)
|
170 |
+
|
171 |
+
# The transfer process should use the information it needs from the
|
172 |
+
# initiation structure, and also perform any one-off setup tasks it
|
173 |
+
# needs to do. It should then respond on stdout with a simple empty
|
174 |
+
# confirmation structure, as follows:
|
175 |
+
write_msg({})
|
176 |
+
|
177 |
+
# After the initiation exchange, git-lfs will send any number of
|
178 |
+
# transfer requests to the stdin of the transfer process, in a serial sequence.
|
179 |
+
while True:
|
180 |
+
msg = read_msg()
|
181 |
+
if msg is None:
|
182 |
+
# When all transfers have been processed, git-lfs will send
|
183 |
+
# a terminate event to the stdin of the transfer process.
|
184 |
+
# On receiving this message the transfer process should
|
185 |
+
# clean up and terminate. No response is expected.
|
186 |
+
sys.exit(0)
|
187 |
+
|
188 |
+
oid = msg["oid"]
|
189 |
+
filepath = msg["path"]
|
190 |
+
completion_url = msg["action"]["href"]
|
191 |
+
header = msg["action"]["header"]
|
192 |
+
chunk_size = int(header.pop("chunk_size"))
|
193 |
+
presigned_urls: List[str] = list(header.values())
|
194 |
+
|
195 |
+
parts = []
|
196 |
+
for i, presigned_url in enumerate(presigned_urls):
|
197 |
+
with FileSlice(filepath, seek_from=i * chunk_size, read_limit=chunk_size) as data:
|
198 |
+
r = requests.put(presigned_url, data=data)
|
199 |
+
r.raise_for_status()
|
200 |
+
parts.append(
|
201 |
+
{
|
202 |
+
"etag": r.headers.get("etag"),
|
203 |
+
"partNumber": i + 1,
|
204 |
+
}
|
205 |
+
)
|
206 |
+
# In order to support progress reporting while data is uploading / downloading,
|
207 |
+
# the transfer process should post messages to stdout
|
208 |
+
write_msg(
|
209 |
+
{
|
210 |
+
"event": "progress",
|
211 |
+
"oid": oid,
|
212 |
+
"bytesSoFar": (i + 1) * chunk_size,
|
213 |
+
"bytesSinceLast": chunk_size,
|
214 |
+
}
|
215 |
+
)
|
216 |
+
# Not precise but that's ok.
|
217 |
+
|
218 |
+
r = requests.post(
|
219 |
+
completion_url,
|
220 |
+
json={
|
221 |
+
"oid": oid,
|
222 |
+
"parts": parts,
|
223 |
+
},
|
224 |
+
)
|
225 |
+
r.raise_for_status()
|
226 |
+
|
227 |
+
write_msg({"event": "complete", "oid": oid})
|
public/gpt-2/transformers/commands/run.py
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from argparse import ArgumentParser
|
16 |
+
|
17 |
+
from ..pipelines import SUPPORTED_TASKS, TASK_ALIASES, Pipeline, PipelineDataFormat, pipeline
|
18 |
+
from ..utils import logging
|
19 |
+
from . import BaseTransformersCLICommand
|
20 |
+
|
21 |
+
|
22 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
23 |
+
|
24 |
+
|
25 |
+
def try_infer_format_from_ext(path: str):
|
26 |
+
if not path:
|
27 |
+
return "pipe"
|
28 |
+
|
29 |
+
for ext in PipelineDataFormat.SUPPORTED_FORMATS:
|
30 |
+
if path.endswith(ext):
|
31 |
+
return ext
|
32 |
+
|
33 |
+
raise Exception(
|
34 |
+
f"Unable to determine file format from file extension {path}. "
|
35 |
+
f"Please provide the format through --format {PipelineDataFormat.SUPPORTED_FORMATS}"
|
36 |
+
)
|
37 |
+
|
38 |
+
|
39 |
+
def run_command_factory(args):
|
40 |
+
nlp = pipeline(
|
41 |
+
task=args.task,
|
42 |
+
model=args.model if args.model else None,
|
43 |
+
config=args.config,
|
44 |
+
tokenizer=args.tokenizer,
|
45 |
+
device=args.device,
|
46 |
+
)
|
47 |
+
format = try_infer_format_from_ext(args.input) if args.format == "infer" else args.format
|
48 |
+
reader = PipelineDataFormat.from_str(
|
49 |
+
format=format,
|
50 |
+
output_path=args.output,
|
51 |
+
input_path=args.input,
|
52 |
+
column=args.column if args.column else nlp.default_input_names,
|
53 |
+
overwrite=args.overwrite,
|
54 |
+
)
|
55 |
+
return RunCommand(nlp, reader)
|
56 |
+
|
57 |
+
|
58 |
+
class RunCommand(BaseTransformersCLICommand):
|
59 |
+
def __init__(self, nlp: Pipeline, reader: PipelineDataFormat):
|
60 |
+
self._nlp = nlp
|
61 |
+
self._reader = reader
|
62 |
+
|
63 |
+
@staticmethod
|
64 |
+
def register_subcommand(parser: ArgumentParser):
|
65 |
+
run_parser = parser.add_parser("run", help="Run a pipeline through the CLI")
|
66 |
+
run_parser.add_argument(
|
67 |
+
"--task", choices=list(SUPPORTED_TASKS.keys()) + list(TASK_ALIASES.keys()), help="Task to run"
|
68 |
+
)
|
69 |
+
run_parser.add_argument("--input", type=str, help="Path to the file to use for inference")
|
70 |
+
run_parser.add_argument("--output", type=str, help="Path to the file that will be used post to write results.")
|
71 |
+
run_parser.add_argument("--model", type=str, help="Name or path to the model to instantiate.")
|
72 |
+
run_parser.add_argument("--config", type=str, help="Name or path to the model's config to instantiate.")
|
73 |
+
run_parser.add_argument(
|
74 |
+
"--tokenizer", type=str, help="Name of the tokenizer to use. (default: same as the model name)"
|
75 |
+
)
|
76 |
+
run_parser.add_argument(
|
77 |
+
"--column",
|
78 |
+
type=str,
|
79 |
+
help="Name of the column to use as input. (For multi columns input as QA use column1,columns2)",
|
80 |
+
)
|
81 |
+
run_parser.add_argument(
|
82 |
+
"--format",
|
83 |
+
type=str,
|
84 |
+
default="infer",
|
85 |
+
choices=PipelineDataFormat.SUPPORTED_FORMATS,
|
86 |
+
help="Input format to read from",
|
87 |
+
)
|
88 |
+
run_parser.add_argument(
|
89 |
+
"--device",
|
90 |
+
type=int,
|
91 |
+
default=-1,
|
92 |
+
help="Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)",
|
93 |
+
)
|
94 |
+
run_parser.add_argument("--overwrite", action="store_true", help="Allow overwriting the output file.")
|
95 |
+
run_parser.set_defaults(func=run_command_factory)
|
96 |
+
|
97 |
+
def run(self):
|
98 |
+
nlp, outputs = self._nlp, []
|
99 |
+
|
100 |
+
for entry in self._reader:
|
101 |
+
output = nlp(**entry) if self._reader.is_multi_columns else nlp(entry)
|
102 |
+
if isinstance(output, dict):
|
103 |
+
outputs.append(output)
|
104 |
+
else:
|
105 |
+
outputs += output
|
106 |
+
|
107 |
+
# Saving data
|
108 |
+
if self._nlp.binary_output:
|
109 |
+
binary_path = self._reader.save_binary(outputs)
|
110 |
+
logger.warning(f"Current pipeline requires output to be in binary format, saving at {binary_path}")
|
111 |
+
else:
|
112 |
+
self._reader.save(outputs)
|
public/gpt-2/transformers/commands/serving.py
ADDED
@@ -0,0 +1,231 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from argparse import ArgumentParser, Namespace
|
16 |
+
from typing import Any, List, Optional
|
17 |
+
|
18 |
+
from ..pipelines import SUPPORTED_TASKS, TASK_ALIASES, Pipeline, pipeline
|
19 |
+
from ..utils import logging
|
20 |
+
from . import BaseTransformersCLICommand
|
21 |
+
|
22 |
+
|
23 |
+
try:
|
24 |
+
from fastapi import Body, FastAPI, HTTPException
|
25 |
+
from fastapi.routing import APIRoute
|
26 |
+
from pydantic import BaseModel
|
27 |
+
from starlette.responses import JSONResponse
|
28 |
+
from uvicorn import run
|
29 |
+
|
30 |
+
_serve_dependencies_installed = True
|
31 |
+
except (ImportError, AttributeError):
|
32 |
+
BaseModel = object
|
33 |
+
|
34 |
+
def Body(*x, **y):
|
35 |
+
pass
|
36 |
+
|
37 |
+
_serve_dependencies_installed = False
|
38 |
+
|
39 |
+
|
40 |
+
logger = logging.get_logger("transformers-cli/serving")
|
41 |
+
|
42 |
+
|
43 |
+
def serve_command_factory(args: Namespace):
|
44 |
+
"""
|
45 |
+
Factory function used to instantiate serving server from provided command line arguments.
|
46 |
+
|
47 |
+
Returns: ServeCommand
|
48 |
+
"""
|
49 |
+
nlp = pipeline(
|
50 |
+
task=args.task,
|
51 |
+
model=args.model if args.model else None,
|
52 |
+
config=args.config,
|
53 |
+
tokenizer=args.tokenizer,
|
54 |
+
device=args.device,
|
55 |
+
)
|
56 |
+
return ServeCommand(nlp, args.host, args.port, args.workers)
|
57 |
+
|
58 |
+
|
59 |
+
class ServeModelInfoResult(BaseModel):
|
60 |
+
"""
|
61 |
+
Expose model information
|
62 |
+
"""
|
63 |
+
|
64 |
+
infos: dict
|
65 |
+
|
66 |
+
|
67 |
+
class ServeTokenizeResult(BaseModel):
|
68 |
+
"""
|
69 |
+
Tokenize result model
|
70 |
+
"""
|
71 |
+
|
72 |
+
tokens: List[str]
|
73 |
+
tokens_ids: Optional[List[int]]
|
74 |
+
|
75 |
+
|
76 |
+
class ServeDeTokenizeResult(BaseModel):
|
77 |
+
"""
|
78 |
+
DeTokenize result model
|
79 |
+
"""
|
80 |
+
|
81 |
+
text: str
|
82 |
+
|
83 |
+
|
84 |
+
class ServeForwardResult(BaseModel):
|
85 |
+
"""
|
86 |
+
Forward result model
|
87 |
+
"""
|
88 |
+
|
89 |
+
output: Any
|
90 |
+
|
91 |
+
|
92 |
+
class ServeCommand(BaseTransformersCLICommand):
|
93 |
+
@staticmethod
|
94 |
+
def register_subcommand(parser: ArgumentParser):
|
95 |
+
"""
|
96 |
+
Register this command to argparse so it's available for the transformer-cli
|
97 |
+
|
98 |
+
Args:
|
99 |
+
parser: Root parser to register command-specific arguments
|
100 |
+
"""
|
101 |
+
serve_parser = parser.add_parser(
|
102 |
+
"serve", help="CLI tool to run inference requests through REST and GraphQL endpoints."
|
103 |
+
)
|
104 |
+
serve_parser.add_argument(
|
105 |
+
"--task",
|
106 |
+
type=str,
|
107 |
+
choices=list(SUPPORTED_TASKS.keys()) + list(TASK_ALIASES.keys()),
|
108 |
+
help="The task to run the pipeline on",
|
109 |
+
)
|
110 |
+
serve_parser.add_argument("--host", type=str, default="localhost", help="Interface the server will listen on.")
|
111 |
+
serve_parser.add_argument("--port", type=int, default=8888, help="Port the serving will listen to.")
|
112 |
+
serve_parser.add_argument("--workers", type=int, default=1, help="Number of http workers")
|
113 |
+
serve_parser.add_argument("--model", type=str, help="Model's name or path to stored model.")
|
114 |
+
serve_parser.add_argument("--config", type=str, help="Model's config name or path to stored model.")
|
115 |
+
serve_parser.add_argument("--tokenizer", type=str, help="Tokenizer name to use.")
|
116 |
+
serve_parser.add_argument(
|
117 |
+
"--device",
|
118 |
+
type=int,
|
119 |
+
default=-1,
|
120 |
+
help="Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)",
|
121 |
+
)
|
122 |
+
serve_parser.set_defaults(func=serve_command_factory)
|
123 |
+
|
124 |
+
def __init__(self, pipeline: Pipeline, host: str, port: int, workers: int):
|
125 |
+
|
126 |
+
self._pipeline = pipeline
|
127 |
+
|
128 |
+
self.host = host
|
129 |
+
self.port = port
|
130 |
+
self.workers = workers
|
131 |
+
|
132 |
+
if not _serve_dependencies_installed:
|
133 |
+
raise RuntimeError(
|
134 |
+
"Using serve command requires FastAPI and unicorn. "
|
135 |
+
'Please install transformers with [serving]: pip install "transformers[serving]".'
|
136 |
+
"Or install FastAPI and unicorn separately."
|
137 |
+
)
|
138 |
+
else:
|
139 |
+
logger.info(f"Serving model over {host}:{port}")
|
140 |
+
self._app = FastAPI(
|
141 |
+
routes=[
|
142 |
+
APIRoute(
|
143 |
+
"/",
|
144 |
+
self.model_info,
|
145 |
+
response_model=ServeModelInfoResult,
|
146 |
+
response_class=JSONResponse,
|
147 |
+
methods=["GET"],
|
148 |
+
),
|
149 |
+
APIRoute(
|
150 |
+
"/tokenize",
|
151 |
+
self.tokenize,
|
152 |
+
response_model=ServeTokenizeResult,
|
153 |
+
response_class=JSONResponse,
|
154 |
+
methods=["POST"],
|
155 |
+
),
|
156 |
+
APIRoute(
|
157 |
+
"/detokenize",
|
158 |
+
self.detokenize,
|
159 |
+
response_model=ServeDeTokenizeResult,
|
160 |
+
response_class=JSONResponse,
|
161 |
+
methods=["POST"],
|
162 |
+
),
|
163 |
+
APIRoute(
|
164 |
+
"/forward",
|
165 |
+
self.forward,
|
166 |
+
response_model=ServeForwardResult,
|
167 |
+
response_class=JSONResponse,
|
168 |
+
methods=["POST"],
|
169 |
+
),
|
170 |
+
],
|
171 |
+
timeout=600,
|
172 |
+
)
|
173 |
+
|
174 |
+
def run(self):
|
175 |
+
run(self._app, host=self.host, port=self.port, workers=self.workers)
|
176 |
+
|
177 |
+
def model_info(self):
|
178 |
+
return ServeModelInfoResult(infos=vars(self._pipeline.model.config))
|
179 |
+
|
180 |
+
def tokenize(self, text_input: str = Body(None, embed=True), return_ids: bool = Body(False, embed=True)):
|
181 |
+
"""
|
182 |
+
Tokenize the provided input and eventually returns corresponding tokens id: - **text_input**: String to
|
183 |
+
tokenize - **return_ids**: Boolean flags indicating if the tokens have to be converted to their integer
|
184 |
+
mapping.
|
185 |
+
"""
|
186 |
+
try:
|
187 |
+
tokens_txt = self._pipeline.tokenizer.tokenize(text_input)
|
188 |
+
|
189 |
+
if return_ids:
|
190 |
+
tokens_ids = self._pipeline.tokenizer.convert_tokens_to_ids(tokens_txt)
|
191 |
+
return ServeTokenizeResult(tokens=tokens_txt, tokens_ids=tokens_ids)
|
192 |
+
else:
|
193 |
+
return ServeTokenizeResult(tokens=tokens_txt)
|
194 |
+
|
195 |
+
except Exception as e:
|
196 |
+
raise HTTPException(status_code=500, detail={"model": "", "error": str(e)})
|
197 |
+
|
198 |
+
def detokenize(
|
199 |
+
self,
|
200 |
+
tokens_ids: List[int] = Body(None, embed=True),
|
201 |
+
skip_special_tokens: bool = Body(False, embed=True),
|
202 |
+
cleanup_tokenization_spaces: bool = Body(True, embed=True),
|
203 |
+
):
|
204 |
+
"""
|
205 |
+
Detokenize the provided tokens ids to readable text: - **tokens_ids**: List of tokens ids -
|
206 |
+
**skip_special_tokens**: Flag indicating to not try to decode special tokens - **cleanup_tokenization_spaces**:
|
207 |
+
Flag indicating to remove all leading/trailing spaces and intermediate ones.
|
208 |
+
"""
|
209 |
+
try:
|
210 |
+
decoded_str = self._pipeline.tokenizer.decode(tokens_ids, skip_special_tokens, cleanup_tokenization_spaces)
|
211 |
+
return ServeDeTokenizeResult(model="", text=decoded_str)
|
212 |
+
except Exception as e:
|
213 |
+
raise HTTPException(status_code=500, detail={"model": "", "error": str(e)})
|
214 |
+
|
215 |
+
async def forward(self, inputs=Body(None, embed=True)):
|
216 |
+
"""
|
217 |
+
**inputs**:
|
218 |
+
**attention_mask**:
|
219 |
+
**tokens_type_ids**:
|
220 |
+
"""
|
221 |
+
|
222 |
+
# Check we don't have empty string
|
223 |
+
if len(inputs) == 0:
|
224 |
+
return ServeForwardResult(output=[], attention=[])
|
225 |
+
|
226 |
+
try:
|
227 |
+
# Forward through the model
|
228 |
+
output = self._pipeline(inputs)
|
229 |
+
return ServeForwardResult(output=output)
|
230 |
+
except Exception as e:
|
231 |
+
raise HTTPException(500, {"error": str(e)})
|
public/gpt-2/transformers/commands/train.py
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import os
|
16 |
+
from argparse import ArgumentParser, Namespace
|
17 |
+
|
18 |
+
from ..data import SingleSentenceClassificationProcessor as Processor
|
19 |
+
from ..file_utils import is_tf_available, is_torch_available
|
20 |
+
from ..pipelines import TextClassificationPipeline
|
21 |
+
from ..utils import logging
|
22 |
+
from . import BaseTransformersCLICommand
|
23 |
+
|
24 |
+
|
25 |
+
if not is_tf_available() and not is_torch_available():
|
26 |
+
raise RuntimeError("At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training")
|
27 |
+
|
28 |
+
# TF training parameters
|
29 |
+
USE_XLA = False
|
30 |
+
USE_AMP = False
|
31 |
+
|
32 |
+
|
33 |
+
def train_command_factory(args: Namespace):
|
34 |
+
"""
|
35 |
+
Factory function used to instantiate training command from provided command line arguments.
|
36 |
+
|
37 |
+
Returns: TrainCommand
|
38 |
+
"""
|
39 |
+
return TrainCommand(args)
|
40 |
+
|
41 |
+
|
42 |
+
class TrainCommand(BaseTransformersCLICommand):
|
43 |
+
@staticmethod
|
44 |
+
def register_subcommand(parser: ArgumentParser):
|
45 |
+
"""
|
46 |
+
Register this command to argparse so it's available for the transformer-cli
|
47 |
+
|
48 |
+
Args:
|
49 |
+
parser: Root parser to register command-specific arguments
|
50 |
+
"""
|
51 |
+
train_parser = parser.add_parser("train", help="CLI tool to train a model on a task.")
|
52 |
+
|
53 |
+
train_parser.add_argument(
|
54 |
+
"--train_data",
|
55 |
+
type=str,
|
56 |
+
required=True,
|
57 |
+
help="path to train (and optionally evaluation) dataset as a csv with "
|
58 |
+
"tab separated labels and sentences.",
|
59 |
+
)
|
60 |
+
train_parser.add_argument(
|
61 |
+
"--column_label", type=int, default=0, help="Column of the dataset csv file with example labels."
|
62 |
+
)
|
63 |
+
train_parser.add_argument(
|
64 |
+
"--column_text", type=int, default=1, help="Column of the dataset csv file with example texts."
|
65 |
+
)
|
66 |
+
train_parser.add_argument(
|
67 |
+
"--column_id", type=int, default=2, help="Column of the dataset csv file with example ids."
|
68 |
+
)
|
69 |
+
train_parser.add_argument(
|
70 |
+
"--skip_first_row", action="store_true", help="Skip the first row of the csv file (headers)."
|
71 |
+
)
|
72 |
+
|
73 |
+
train_parser.add_argument("--validation_data", type=str, default="", help="path to validation dataset.")
|
74 |
+
train_parser.add_argument(
|
75 |
+
"--validation_split",
|
76 |
+
type=float,
|
77 |
+
default=0.1,
|
78 |
+
help="if validation dataset is not provided, fraction of train dataset " "to use as validation dataset.",
|
79 |
+
)
|
80 |
+
|
81 |
+
train_parser.add_argument("--output", type=str, default="./", help="path to saved the trained model.")
|
82 |
+
|
83 |
+
train_parser.add_argument(
|
84 |
+
"--task", type=str, default="text_classification", help="Task to train the model on."
|
85 |
+
)
|
86 |
+
train_parser.add_argument(
|
87 |
+
"--model", type=str, default="bert-base-uncased", help="Model's name or path to stored model."
|
88 |
+
)
|
89 |
+
train_parser.add_argument("--train_batch_size", type=int, default=32, help="Batch size for training.")
|
90 |
+
train_parser.add_argument("--valid_batch_size", type=int, default=64, help="Batch size for validation.")
|
91 |
+
train_parser.add_argument("--learning_rate", type=float, default=3e-5, help="Learning rate.")
|
92 |
+
train_parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon for Adam optimizer.")
|
93 |
+
train_parser.set_defaults(func=train_command_factory)
|
94 |
+
|
95 |
+
def __init__(self, args: Namespace):
|
96 |
+
self.logger = logging.get_logger("transformers-cli/training")
|
97 |
+
|
98 |
+
self.framework = "tf" if is_tf_available() else "torch"
|
99 |
+
|
100 |
+
os.makedirs(args.output, exist_ok=True)
|
101 |
+
self.output = args.output
|
102 |
+
|
103 |
+
self.column_label = args.column_label
|
104 |
+
self.column_text = args.column_text
|
105 |
+
self.column_id = args.column_id
|
106 |
+
|
107 |
+
self.logger.info(f"Loading {args.task} pipeline for {args.model}")
|
108 |
+
if args.task == "text_classification":
|
109 |
+
self.pipeline = TextClassificationPipeline.from_pretrained(args.model)
|
110 |
+
elif args.task == "token_classification":
|
111 |
+
raise NotImplementedError
|
112 |
+
elif args.task == "question_answering":
|
113 |
+
raise NotImplementedError
|
114 |
+
|
115 |
+
self.logger.info(f"Loading dataset from {args.train_data}")
|
116 |
+
self.train_dataset = Processor.create_from_csv(
|
117 |
+
args.train_data,
|
118 |
+
column_label=args.column_label,
|
119 |
+
column_text=args.column_text,
|
120 |
+
column_id=args.column_id,
|
121 |
+
skip_first_row=args.skip_first_row,
|
122 |
+
)
|
123 |
+
self.valid_dataset = None
|
124 |
+
if args.validation_data:
|
125 |
+
self.logger.info(f"Loading validation dataset from {args.validation_data}")
|
126 |
+
self.valid_dataset = Processor.create_from_csv(
|
127 |
+
args.validation_data,
|
128 |
+
column_label=args.column_label,
|
129 |
+
column_text=args.column_text,
|
130 |
+
column_id=args.column_id,
|
131 |
+
skip_first_row=args.skip_first_row,
|
132 |
+
)
|
133 |
+
|
134 |
+
self.validation_split = args.validation_split
|
135 |
+
self.train_batch_size = args.train_batch_size
|
136 |
+
self.valid_batch_size = args.valid_batch_size
|
137 |
+
self.learning_rate = args.learning_rate
|
138 |
+
self.adam_epsilon = args.adam_epsilon
|
139 |
+
|
140 |
+
def run(self):
|
141 |
+
if self.framework == "tf":
|
142 |
+
return self.run_tf()
|
143 |
+
return self.run_torch()
|
144 |
+
|
145 |
+
def run_torch(self):
|
146 |
+
raise NotImplementedError
|
147 |
+
|
148 |
+
def run_tf(self):
|
149 |
+
self.pipeline.fit(
|
150 |
+
self.train_dataset,
|
151 |
+
validation_data=self.valid_dataset,
|
152 |
+
validation_split=self.validation_split,
|
153 |
+
learning_rate=self.learning_rate,
|
154 |
+
adam_epsilon=self.adam_epsilon,
|
155 |
+
train_batch_size=self.train_batch_size,
|
156 |
+
valid_batch_size=self.valid_batch_size,
|
157 |
+
)
|
158 |
+
|
159 |
+
# Save trained pipeline
|
160 |
+
self.pipeline.save_pretrained(self.output)
|
public/gpt-2/transformers/commands/transformers_cli.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
from argparse import ArgumentParser
|
17 |
+
|
18 |
+
from .add_new_model import AddNewModelCommand
|
19 |
+
from .convert import ConvertCommand
|
20 |
+
from .download import DownloadCommand
|
21 |
+
from .env import EnvironmentCommand
|
22 |
+
from .lfs import LfsCommands
|
23 |
+
from .run import RunCommand
|
24 |
+
from .serving import ServeCommand
|
25 |
+
from .user import UserCommands
|
26 |
+
|
27 |
+
|
28 |
+
def main():
|
29 |
+
parser = ArgumentParser("Transformers CLI tool", usage="transformers-cli <command> [<args>]")
|
30 |
+
commands_parser = parser.add_subparsers(help="transformers-cli command helpers")
|
31 |
+
|
32 |
+
# Register commands
|
33 |
+
ConvertCommand.register_subcommand(commands_parser)
|
34 |
+
DownloadCommand.register_subcommand(commands_parser)
|
35 |
+
EnvironmentCommand.register_subcommand(commands_parser)
|
36 |
+
RunCommand.register_subcommand(commands_parser)
|
37 |
+
ServeCommand.register_subcommand(commands_parser)
|
38 |
+
UserCommands.register_subcommand(commands_parser)
|
39 |
+
AddNewModelCommand.register_subcommand(commands_parser)
|
40 |
+
LfsCommands.register_subcommand(commands_parser)
|
41 |
+
|
42 |
+
# Let's go
|
43 |
+
args = parser.parse_args()
|
44 |
+
|
45 |
+
if not hasattr(args, "func"):
|
46 |
+
parser.print_help()
|
47 |
+
exit(1)
|
48 |
+
|
49 |
+
# Run
|
50 |
+
service = args.func(args)
|
51 |
+
service.run()
|
52 |
+
|
53 |
+
|
54 |
+
if __name__ == "__main__":
|
55 |
+
main()
|