haritsahm commited on
Commit
104566a
·
1 Parent(s): 5c36fe1

Modify flows and variable names

Browse files
Files changed (1) hide show
  1. main.py +15 -9
main.py CHANGED
@@ -97,7 +97,7 @@ def filter_files(files: List) -> List:
97
  return file_paths
98
 
99
 
100
- def predict_bilateral(file):
101
  """Predict Bilateral Mammography.
102
 
103
  Parameters
@@ -110,17 +110,23 @@ def predict_bilateral(file):
110
  List[List, Dict]
111
  List of objects that will be used to display the result
112
  """
 
 
 
113
  displays_imgs = []
 
114
 
115
- image = np.array(Image.open(file.name))/257
116
- image = np.reshape(image, (2, image.shape[0]//2, image.shape[1]))
 
117
 
118
- im_h, im_w = image[0].shape[:2]
 
119
 
120
- image_t = torch.from_numpy(image)
121
- image_t = image_t.unsqueeze(0) # Add batch dimension
122
 
123
- out, _, out_refiner = BILATERAL_MODEL(image_t)
124
 
125
  out_refiner = utils.mean_activations(out_refiner).numpy()
126
 
@@ -135,10 +141,10 @@ def predict_bilateral(file):
135
  refined_view, (im_w, im_h), interpolation=cv2.INTER_LINEAR)
136
 
137
  image0_colored = cv2.normalize(
138
- image[0], None, 0, 255, cv2.NORM_MINMAX, dtype=cv2.CV_8U)
139
  image0_colored = cv2.cvtColor(image0_colored, cv2.COLOR_GRAY2RGB)
140
  image1_colored = cv2.normalize(
141
- image[1], None, 0, 255, cv2.NORM_MINMAX, dtype=cv2.CV_8U)
142
  image1_colored = cv2.cvtColor(image1_colored, cv2.COLOR_GRAY2RGB)
143
 
144
  heatmap0_overlay = cv2.addWeighted(
 
97
  return file_paths
98
 
99
 
100
+ def predict_bilateral(files):
101
  """Predict Bilateral Mammography.
102
 
103
  Parameters
 
110
  List[List, Dict]
111
  List of objects that will be used to display the result
112
  """
113
+
114
+ filtered_files = filter_files(files)
115
+
116
  displays_imgs = []
117
+ images = []
118
 
119
+ for path in filtered_files:
120
+ image = np.array(Image.open(str(path)))
121
+ images.append(image)
122
 
123
+ images = np.asarray(images).astype(np.float32)
124
+ im_h, im_w = images[0].shape[:2]
125
 
126
+ images_t = torch.from_numpy(images)
127
+ images_t = images_t.unsqueeze(0) # Add batch dimension
128
 
129
+ out, _, out_refiner = BILATERAL_MODEL(images_t)
130
 
131
  out_refiner = utils.mean_activations(out_refiner).numpy()
132
 
 
141
  refined_view, (im_w, im_h), interpolation=cv2.INTER_LINEAR)
142
 
143
  image0_colored = cv2.normalize(
144
+ images[0], None, 0, 255, cv2.NORM_MINMAX, dtype=cv2.CV_8U)
145
  image0_colored = cv2.cvtColor(image0_colored, cv2.COLOR_GRAY2RGB)
146
  image1_colored = cv2.normalize(
147
+ images[1], None, 0, 255, cv2.NORM_MINMAX, dtype=cv2.CV_8U)
148
  image1_colored = cv2.cvtColor(image1_colored, cv2.COLOR_GRAY2RGB)
149
 
150
  heatmap0_overlay = cv2.addWeighted(