File size: 7,882 Bytes
fff0339
 
7afda13
 
fff0339
7afda13
 
fff0339
7afda13
fff0339
7afda13
 
fff0339
8bf3ba1
 
 
7afda13
8bf3ba1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60cae9a
7afda13
 
 
fff0339
7afda13
 
 
fff0339
7afda13
 
fff0339
7afda13
 
fff0339
 
7980afd
fff0339
7afda13
 
fff0339
 
 
 
7980afd
 
7afda13
 
 
4e6f4e8
7980afd
 
7afda13
4e6f4e8
 
7afda13
 
 
 
 
 
 
 
 
 
 
 
 
 
4e6f4e8
 
 
 
 
 
 
 
 
 
 
 
7afda13
4e6f4e8
 
 
e883f8a
7afda13
 
 
 
 
fff0339
7980afd
7afda13
 
7980afd
7afda13
fff0339
7afda13
 
 
 
4e6f4e8
7afda13
 
8bf3ba1
7afda13
 
4e6f4e8
 
 
 
 
 
 
 
 
 
 
7afda13
 
 
 
 
 
 
 
 
8bf3ba1
 
 
 
 
 
 
 
 
 
 
7afda13
 
8bf3ba1
e883f8a
8bf3ba1
fff0339
7afda13
4e6f4e8
 
 
 
7afda13
7980afd
 
7afda13
4e6f4e8
 
 
 
 
7980afd
7afda13
 
 
4e6f4e8
 
 
 
 
 
 
 
 
 
 
7afda13
 
 
fff0339
 
8bf3ba1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import gradio as gr
import os
from langchain_community.vectorstores import FAISS
from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.embeddings import HuggingFaceEmbeddings 
from langchain_community.llms import HuggingFaceEndpoint
from langchain.chains import ConversationalRetrievalChain
from langchain.memory import ConversationBufferMemory

api_token = os.getenv("HF_TOKEN")
DEFAULT_LLM = "meta-llama/Meta-Llama-3-8B-Instruct"

def load_and_create_db(files):
    if not files:
        return None, None
        
    try:
        # Create a list of documents
        list_file_paths = []
        for file in files:
            # Save uploaded file temporarily
            file_name = file.name
            if file_name.lower().endswith('.pdf'):
                list_file_paths.append(file_name)
            else:
                raise ValueError(f"Unsupported file format: {file_name}. Please upload PDF files only.")
        
        if not list_file_paths:
            return None, None
            
        # Load documents
        loaders = [PyPDFLoader(path) for path in list_file_paths]
        pages = []
        for loader in loaders:
            pages.extend(loader.load())
            
        # Split documents
        text_splitter = RecursiveCharacterTextSplitter(
            chunk_size=1024,
            chunk_overlap=64
        )
        doc_splits = text_splitter.split_documents(pages)
        
        # Create vector database
        embeddings = HuggingFaceEmbeddings()
        vectordb = FAISS.from_documents(doc_splits, embeddings)
        
        # Initialize QA chain
        qa_chain = initialize_llmchain(vectordb)
        
        return vectordb, qa_chain
    except Exception as e:
        print(f"Error processing files: {str(e)}")
        return None, None

def initialize_llmchain(vector_db, temperature=0.5, max_tokens=4096, top_k=3):
    llm = HuggingFaceEndpoint(
        repo_id=DEFAULT_LLM,
        huggingfacehub_api_token=api_token,
        temperature=temperature,
        max_new_tokens=max_tokens,
        top_k=top_k,
    )
    
    memory = ConversationBufferMemory(
        memory_key="chat_history",
        output_key='answer',
        return_messages=True
    )

    qa_chain = ConversationalRetrievalChain.from_llm(
        llm,
        retriever=vector_db.as_retriever(),
        chain_type="stuff",
        memory=memory,
        return_source_documents=True,
        verbose=False,
    )
    return qa_chain

def format_citation(source_doc):
    content = source_doc.page_content.strip()
    page = source_doc.metadata["page"] + 1
    return content, page

def conversation(qa_chain, message, history):
    if not qa_chain:
        return (None, gr.update(value=""), history, "", 0, "", 0, "", 0, 
                "Please upload a document first.")
        
    formatted_history = []
    for user_msg, bot_msg in history:
        formatted_history.append(f"User: {user_msg}")
        formatted_history.append(f"Assistant: {bot_msg}")
    
    response = qa_chain.invoke({
        "question": message,
        "chat_history": formatted_history
    })
    
    answer = response["answer"]
    if "Helpful Answer:" in answer:
        answer = answer.split("Helpful Answer:")[-1]

    # Format answer with citation numbers
    sources = response["source_documents"][:3]
    modified_answer = answer
    for i in range(len(sources)):
        modified_answer = modified_answer + f" [{i+1}]"

    # Get citation contents and page numbers
    citations = [format_citation(source) for source in sources]
    source1_content, page1 = citations[0] if len(citations) > 0 else ("", 0)
    source2_content, page2 = citations[1] if len(citations) > 1 else ("", 0)
    source3_content, page3 = citations[2] if len(citations) > 2 else ("", 0)
    
    new_history = history + [(message, modified_answer)]
    return (qa_chain, gr.update(value=""), new_history, 
            source1_content, page1, source2_content, page2, source3_content, page3, "")

def demo():
    with gr.Blocks(theme=gr.themes.Default(primary_hue="red", secondary_hue="pink", neutral_hue="sky")) as demo:
        vector_db = gr.State()
        qa_chain = gr.State()
        
        gr.HTML("<center><h1>RAG PDF Chatbot</h1></center>")
        gr.Markdown("""
        <b>Query your PDF documents!</b> This AI agent performs retrieval augmented generation (RAG) 
        on PDF documents. <b>Please do not upload confidential documents.</b>
        """)
        
        with gr.Row():
            with gr.Column(scale=1):
                document = gr.Files(
                    height=300,
                    file_count="multiple",
                    file_types=[".pdf"],
                    label="Upload PDF documents"
                )
                upload_status = gr.Textbox(label="Upload Status", interactive=False)
                
            with gr.Column(scale=2):
                chatbot = gr.Chatbot(height=500)
                with gr.Accordion("Citations", open=False):
                    with gr.Row():
                        doc_source1 = gr.Textbox(label="[1]", lines=2, container=True, scale=20)
                        source1_page = gr.Number(label="Page", scale=1)
                    with gr.Row():
                        doc_source2 = gr.Textbox(label="[2]", lines=2, container=True, scale=20)
                        source2_page = gr.Number(label="Page", scale=1)
                    with gr.Row():
                        doc_source3 = gr.Textbox(label="[3]", lines=2, container=True, scale=20)
                        source3_page = gr.Number(label="Page", scale=1)
                with gr.Row():
                    msg = gr.Textbox(
                        placeholder="Ask a question about your documents...",
                        container=True
                    )
                with gr.Row():
                    submit_btn = gr.Button("Submit")
                    clear_btn = gr.ClearButton([msg, chatbot], value="Clear")
        
        def handle_file_upload(files):
            if not files:
                return None, None, "No files uploaded"
            try:
                vectordb, qa = load_and_create_db(files)
                if vectordb and qa:
                    return vectordb, qa, "Files successfully processed"
                return None, None, "Error processing files"
            except Exception as e:
                return None, None, f"Error: {str(e)}"
        
        # Automatically create vector DB and initialize chain on file upload
        document.upload(
            fn=handle_file_upload,
            inputs=[document],
            outputs=[vector_db, qa_chain, upload_status]
        )
        
        # Clear citations when chat is cleared
        def clear_all():
            return ["", 0, "", 0, "", 0]
            
        # Chatbot events
        submit_btn.click(
            conversation,
            inputs=[qa_chain, msg, chatbot],
            outputs=[qa_chain, msg, chatbot, 
                    doc_source1, source1_page,
                    doc_source2, source2_page,
                    doc_source3, source3_page,
                    upload_status]
        )
        msg.submit(
            conversation,
            inputs=[qa_chain, msg, chatbot],
            outputs=[qa_chain, msg, chatbot,
                    doc_source1, source1_page,
                    doc_source2, source2_page,
                    doc_source3, source3_page,
                    upload_status]
        )
        clear_btn.click(
            clear_all,
            outputs=[doc_source1, source1_page,
                    doc_source2, source2_page,
                    doc_source3, source3_page]
        )
        
    demo.queue().launch(debug=True)

if __name__ == "__main__":
    demo()