File size: 8,898 Bytes
056c529
01ff6b3
 
 
 
056c529
62f49fe
 
 
eb5fb7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62f49fe
 
d3e1b2e
056c529
01ff6b3
 
 
 
 
2f716a3
01ff6b3
 
 
 
d3e1b2e
01ff6b3
 
d3e1b2e
2f716a3
19a72ca
01ff6b3
19a72ca
01ff6b3
d3e1b2e
 
62f49fe
01ff6b3
 
 
 
 
 
 
 
 
 
 
 
 
c2e2361
056c529
c2e2361
 
01ff6b3
 
 
 
 
 
 
 
 
 
 
056c529
 
 
 
 
01ff6b3
 
 
 
 
 
d3e1b2e
01ff6b3
 
056c529
 
 
01ff6b3
 
056c529
 
c69ccab
056c529
01ff6b3
 
62f49fe
01ff6b3
 
056c529
 
 
 
 
71dc112
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import gradio as gr
from transformers import pipeline
from pydub import AudioSegment
import os
import speech_recognition as sr


html_seeker='''
<html> <head> <meta charset="utf-8" /> <title>Gentle</title> <style> html, body { margin: 0; padding: 0; min-width: 900px; } #header { position: fixed; top: 0; left: 0; height: 50px; min-width: 900px; line-height: 50px; width: 100%; background-color: #999; box-shadow: 0px 0px 5px 0px rgba(0,0,0,0.5); font-family: Helvetica, sans-serif; } #header, #header a { color: white; } .home { margin: 0; font-weight: bold; text-transform: lowercase; width: 100px; } h4.home { margin: 0; background: #666; padding-left: 25px; padding-right: 30px; margin-right: 20px; float: left; text-decoration: none; } .home:hover a { background: #555; } #audio { margin-top: 9px; width: 500px; display: inline-block; } #transcript { margin: 0 15px; margin-bottom: 5em; white-space: pre-wrap; line-height: 2em; max-width: 600px; color: #999; clear: both; margin-top: 75px; /*direction: rtl;*/ } .success { color: black; } .success:hover { text-decoration: underline; } .active { color: magenta; background-color: yellow; } #preloader { visibility: hidden; } </style> </head> <body> <div id="header"> <h4 class="home">Model name</h4>'''
html_seeker1='''</div>
      </div>


    <div id="transcript" dir="auto"></div>
    

<script>
	
	var $a = document.querySelector("audio");
window.onkeydown = function(ev) {
    if(ev.keyCode == 32) {
        ev.preventDefault();
        $a.pause();
    }
}
var $trans = document.getElementById("transcript");
var wds = [];
var cur_wd;

function highlight_word() {
    var t = $a.currentTime;
    // XXX: O(N); use binary search
    var hits = wds.filter(function(x) {
        return (t - x['timestamp']['0']) > 0.01 && (x['timestamp']['1'] - t) > 0.01;
    }, wds);
    var next_wd = hits[hits.length - 1];

    if(cur_wd != next_wd) {
        var active = document.querySelectorAll('.active');
        for(var i = 0; i < active.length; i++) {
            active[i].classList.remove('active');
        }
        if(next_wd && next_wd.$div) {
            next_wd.$div.classList.add('active');
            //render_phones(next_wd);
        }
    }
    cur_wd = next_wd;
    //highlight_phone(t);

    window.requestAnimationFrame(highlight_word);
}
window.requestAnimationFrame(highlight_word);

$trans.innerHTML = "Loading...";

function render(ret) {
    wds = ret['chunks'] || [];
    transcript = ret['text'];

    $trans.innerHTML = '';

    var currentOffset = 0;

    wds.forEach(function(wd) {
        
        
        var $wd = document.createElement('span');
        var txt = wd['text'];
        var $wdText = document.createTextNode(txt);
        $wd.appendChild($wdText);
        wd.$div = $wd;
        $wd.className = 'success';
        
        $wd.onclick = function() {
            console.log(wd['timestamp']['0']);
                $a.currentTime = wd['timestamp']['0'];
                $a.play();
        };
        $trans.appendChild($wd);
        $trans.appendChild(document.createTextNode(' '));
    });


}





function update() {
    if(INLINE_JSON) {
        // We want this to work from file:/// domains, so we provide a
        // mechanism for inlining the alignment data.
        render(INLINE_JSON);
    }
}

var INLINE_JSON='''
html_seeker2=''';update();
</script>'''
'''
model_name = "voidful/wav2vec2-xlsr-multilingual-56"
model0 = pipeline(task="automatic-speech-recognition",
                 model=model_name)


model_name = "SLPL/Sharif-wav2vec2"
model2 = pipeline(task="automatic-speech-recognition",
                 model=model_name)
model_name = "ghofrani/common8"
model1 = pipeline(task="automatic-speech-recognition",
                 model=model_name)
'''
import json
def predict_fa(speech,model):
    '''if model== "SLPL/Sharif-wav2vec2":
        text = model2(speech,return_timestamps="word" )
    elif model== "ghofrani/common8":
        text = model1(speech,return_timestamps="word" )
    elif model== "voidful/wav2vec2-xlsr-multilingual-56":
        text = model0(speech,return_timestamps="word" )
    '''
    text={"text": "\u0627\u06cc\u0646\u0627\u0646 \u06a9\u0631\u0627\u0644\u0627\u0644 \u0648 \u06a9\u0648\u0631\u0646\u062f \u0648 \u0644\u0632\u0627 \u0627\u0632 \u06af\u0645\u0631\u0627\u0647\u06cc \u0628\u0647 \u0631\u0627\u0647 \u0628\u0627\u0632 \u0646\u0645\u06cc\u06a9\u0631\u062f\u0646\u062f", "chunks": [{"text": "\u0627\u06cc\u0646\u0627\u0646", "timestamp": [0.0, 0.72]}, {"text": "\u06a9\u0631\u0627\u0644\u0627\u0644", "timestamp": [0.92, 1.6]}, {"text": "\u0648", "timestamp": [1.72, 1.74]}, {"text": "\u06a9\u0648\u0631\u0646\u062f", "timestamp": [1.9, 2.54]}, {"text": "\u0648", "timestamp": [2.76, 2.78]}, {"text": "\u0644\u0632\u0627", "timestamp": [2.88, 3.16]}, {"text": "\u0627\u0632", "timestamp": [3.4, 3.5]}, {"text": "\u06af\u0645\u0631\u0627\u0647\u06cc", "timestamp": [3.64, 4.3]}, {"text": "\u0628\u0647", "timestamp": [4.6, 4.68]}, {"text": "\u0631\u0627\u0647", "timestamp": [4.78, 5.12]}, {"text": "\u0628\u0627\u0632", "timestamp": [5.3, 5.58]}, {"text": "\u0646\u0645\u06cc\u06a9\u0631\u062f\u0646\u062f", "timestamp": [5.68, 7.14]}]}
    return [text['text'],json.dumps(text),html_seeker+speech+html_seeker1+json.dumps(text)+html_seeker2]


def convert_to_wav(filename):
    filenameObj=os.path.splitext(filename)
    audio = AudioSegment.from_file(filename,format=filenameObj[1].replace(".",""))
    new_filename = filenameObj[0] + ".wav"
    while os.path.exists(new_filename):
        new_filename = os.path.splitext(new_filename)[0]+"(1)"+ ".wav"
    audio.export(new_filename, format="wav")
    print(f"Converting {filename} to {new_filename}...")
    return new_filename
def g_rec(audio_File ,language):
    r = sr.Recognizer()
    print(audio_File)
    
    #if not os.path.splitext(audio_File)[1]==".wav":
    #    audio_File=convert_to_wav(audio_File)
    hellow=sr.AudioFile(audio_File)
    with hellow as source:
        audio = r.record(source)
    try:
        s = r.recognize_google(audio,language =language)
        res= "Text: "+s
    except Exception as e:
        res= "Exception: "+str(e)
    return res
  # Export file as .wav
  
#predict(load_file_to_data('audio file path',sampling_rate=16_000)) # beware of the audio file sampling rate

#predict_lang_specific(load_file_to_data('audio file path',sampling_rate=16_000),'en') # beware of the audio file sampling rate
with gr.Blocks() as demo:
    gr.Markdown("multilingual Speech Recognition")

    with gr.Tab("Persian models"):
        inputs_speech_fa =gr.Audio(source="upload", type="filepath", optional=True,label="Upload your audio:")
        inputs_model_fa =gr.inputs.Radio(label="Language", choices=["ghofrani/common8","SLPL/Sharif-wav2vec2","voidful/wav2vec2-xlsr-multilingual-56"])
        output_transcribe1_fa = gr.Textbox(label="Transcribed text:")
        output_transcribe1_fa1 = gr.Textbox(label="Transcribed text with timestamps:")
        output_transcribe1_fa2 =gr.HTML(label="")
        transcribe_audio1_fa= gr.Button("Submit")
    with gr.Tab("google"):
        gr.Markdown("set your speech language")
        inputs_speech1 =[ 
            gr.Audio(source="upload", type="filepath"),
            gr.Dropdown(choices=["af-ZA","am-ET","ar-AE","ar-BH","ar-DZ","ar-EG","ar-IL","ar-IQ","ar-JO","ar-KW","ar-LB","ar-MA","ar-MR","ar-OM","ar-PS","ar-QA","ar-SA","ar-TN","ar-YE","az-AZ","bg-BG","bn-BD","bn-IN","bs-BA","ca-ES","cs-CZ","da-DK","de-AT","de-CH","de-DE","el-GR","en-AU","en-CA","en-GB","en-GH","en-HK","en-IE","en-IN","en-KE","en-NG","en-NZ","en-PH","en-PK","en-SG","en-TZ","en-US","en-ZA","es-AR","es-BO","es-CL","es-CO","es-CR","es-DO","es-EC","es-ES","es-GT","es-HN","es-MX","es-NI","es-PA","es-PE","es-PR","es-PY","es-SV","es-US","es-UY","es-VE","et-EE","eu-ES","fa-IR","fi-FI","fil-PH","fr-BE","fr-CA","fr-CH","fr-FR","gl-ES","gu-IN","hi-IN","hr-HR","hu-HU","hy-AM","id-ID","is-IS","it-CH","it-IT","iw-IL","ja-JP","jv-ID","ka-GE","kk-KZ","km-KH","kn-IN","ko-KR","lo-LA","lt-LT","lv-LV","mk-MK","ml-IN","mn-MN","mr-IN","ms-MY","my-MM","ne-NP","nl-BE","nl-NL","no-NO","pa-Guru-IN","pl-PL","pt-BR","pt-PT","ro-RO","ru-RU","si-LK","sk-SK","sl-SI","sq-AL","sr-RS","su-ID","sv-SE","sw-KE","sw-TZ","ta-IN","ta-LK","ta-MY","ta-SG","te-IN","th-TH","tr-TR","uk-UA","ur-IN","ur-PK","uz-UZ","vi-VN","yue-Hant-HK","zh (cmn-Hans-CN)","zh-TW (cmn-Hant-TW)","zu-ZA"]
,value="fa-IR",label="language code")
        ]
        output_transcribe1 = gr.Textbox(label="output")
        transcribe_audio1_go= gr.Button("Submit")
    
    transcribe_audio1_fa.click(fn=predict_fa,
    inputs=[inputs_speech_fa ,inputs_model_fa ],
    outputs=[output_transcribe1_fa ,output_transcribe1_fa1,output_transcribe1_fa2 ] )
    
    transcribe_audio1_go.click(fn=g_rec,
    inputs=inputs_speech1 ,
    outputs=output_transcribe1 )


if __name__ == "__main__":
    demo.launch()