Kang-Seong-Jun's picture
Update app.py
f7f0062 verified
raw
history blame
1.73 kB
import torch
import requests
import gradio as gr
from PIL import Image
from transformers import ResNetForImageClassification, AutoImageProcessor
target_folder = "Kang-Seong-Jun/Korean_Real_Estate_Classifier"
def load_model_and_preprocessor(target_folder):
model = ResNetForImageClassification.from_pretrained(target_folder)
image_processor = AutoImageProcessor.from_pretrained(target_folder)
return model, image_processor
def infer_image(image, model, image_processor, k):
processed_img = image_processor(images=image.convert("RGB"), return_tensors="pt")
with torch.no_grad():
outputs = model(**processed_img)
logits = outputs.logits
prob = torch.nn.functional.softmax(logits, dim=-1)
topk_prob, topk_indices = torch.topk(prob, k=k)
res = ""
for idx, (prob, index) in enumerate(zip(topk_prob[0], topk_indices[0])):
res += f"{idx+1}. {model.config.id2label[index.item()]:<15} ({prob.item()*100:.2f} %) \n"
return res
def infer(image, k, target_folder=target_folder):
try:
model, image_processor = load_model_and_preprocessor(target_folder)
res = infer_image(image, model, image_processor, k)
except Exception as e:
image = Image.new('RGB', (224, 224))
res = f"์ด๋ฏธ์ง€๋ฅผ ์ฒ˜๋ฆฌํ•˜๋Š”๋ฐ ๋ฌธ์ œ๊ฐ€ ๋ฐœ์ƒํ–ˆ์Šต๋‹ˆ๋‹ค: {str(e)}"
return image, res
demo = gr.Interface(
fn=infer,
inputs=[
gr.Image(type="pil", label="์ž…๋ ฅ ์ด๋ฏธ์ง€"),
gr.Slider(minimum=0, maximum=20, step=1, value=3, label="์ƒ์œ„ ๋ช‡๊ฐœ๊นŒ์ง€ ๋ณด์—ฌ์ค„๊นŒ์š”?")
],
outputs=[
gr.Image(type="pil", label="์ž…๋ ฅ ์ด๋ฏธ์ง€"),
gr.Textbox(label="์ข…๋ฅ˜ (ํ™•๋ฅ )")
],
)
demo.launch()