Kang-Seong-Jun commited on
Commit
009e801
ยท
verified ยท
1 Parent(s): 3cf174c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -20
app.py CHANGED
@@ -1,9 +1,9 @@
1
 
2
-
3
  import requests
4
  import gradio as gr
5
  from PIL import Image
6
-
7
 
8
  target_folder = "Kang-Seong-Jun/Korean_Real_Estate_Classifier"
9
 
@@ -12,15 +12,6 @@ def load_model_and_preprocessor(target_folder):
12
  image_processor = AutoImageProcessor.from_pretrained(target_folder)
13
  return model, image_processor
14
 
15
- def fetch_image(url):
16
- headers = {
17
- 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36'
18
- }
19
- image_raw = requests.get(url, headers=headers, stream=True).raw
20
- image = Image.open(image_raw)
21
-
22
- return image
23
-
24
  def infer_image(image, model, image_processor, k):
25
  processed_img = image_processor(images=image.convert("RGB"), return_tensors="pt")
26
 
@@ -36,21 +27,19 @@ def infer_image(image, model, image_processor, k):
36
  res += f"{idx+1}. {model.config.id2label[index.item()]:<15} ({prob.item()*100:.2f} %) \n"
37
  return res
38
 
39
- def infer(url, k, target_folder=target_folder):
40
- try :
41
- image = fetch_image(url)
42
  model, image_processor = load_model_and_preprocessor(target_folder)
43
- res = infer_image(image, model, image_processor, k)
44
- except :
45
  image = Image.new('RGB', (224, 224))
46
- res = "์ด๋ฏธ์ง€๋ฅผ ๋ถˆ๋Ÿฌ์˜ค๋Š”๋ฐ ๋ฌธ์ œ๊ฐ€ ์žˆ๋‚˜๋ด์š”. ๋‹ค๋ฅธ ์ด๋ฏธ์ง€ url๋กœ ๋‹ค์‹œ ์‹œ๋„ํ•ด์ฃผ์„ธ์š”."
47
  return image, res
48
 
49
  demo = gr.Interface(
50
  fn=infer,
51
  inputs=[
52
- gr.Textbox(value="https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcRpE-UHBp8ZufNUd3BKw8gtIxSe3IUwspOfqw&s",
53
- label="Image URL"),
54
  gr.Slider(minimum=0, maximum=20, step=1, value=3, label="์ƒ์œ„ ๋ช‡๊ฐœ๊นŒ์ง€ ๋ณด์—ฌ์ค„๊นŒ์š”?")
55
  ],
56
  outputs=[
@@ -59,4 +48,4 @@ demo = gr.Interface(
59
  ],
60
  )
61
 
62
- demo.launch()
 
1
 
2
+ import torch
3
  import requests
4
  import gradio as gr
5
  from PIL import Image
6
+ from transformers import ResNetForImageClassification, AutoImageProcessor
7
 
8
  target_folder = "Kang-Seong-Jun/Korean_Real_Estate_Classifier"
9
 
 
12
  image_processor = AutoImageProcessor.from_pretrained(target_folder)
13
  return model, image_processor
14
 
 
 
 
 
 
 
 
 
 
15
  def infer_image(image, model, image_processor, k):
16
  processed_img = image_processor(images=image.convert("RGB"), return_tensors="pt")
17
 
 
27
  res += f"{idx+1}. {model.config.id2label[index.item()]:<15} ({prob.item()*100:.2f} %) \n"
28
  return res
29
 
30
+ def infer(image, k, target_folder=target_folder):
31
+ try:
 
32
  model, image_processor = load_model_and_preprocessor(target_folder)
33
+ res = infer_image(image, model, image_processor, k)
34
+ except Exception as e:
35
  image = Image.new('RGB', (224, 224))
36
+ res = f"์ด๋ฏธ์ง€๋ฅผ ์ฒ˜๋ฆฌํ•˜๋Š”๋ฐ ๋ฌธ์ œ๊ฐ€ ๋ฐœ์ƒํ–ˆ์Šต๋‹ˆ๋‹ค: {str(e)}"
37
  return image, res
38
 
39
  demo = gr.Interface(
40
  fn=infer,
41
  inputs=[
42
+ gr.Image(type="pil", label="์ž…๋ ฅ ์ด๋ฏธ์ง€"),
 
43
  gr.Slider(minimum=0, maximum=20, step=1, value=3, label="์ƒ์œ„ ๋ช‡๊ฐœ๊นŒ์ง€ ๋ณด์—ฌ์ค„๊นŒ์š”?")
44
  ],
45
  outputs=[
 
48
  ],
49
  )
50
 
51
+ demo.launch()