Kang-Seong-Jun
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
|
2 |
-
|
3 |
import requests
|
4 |
import gradio as gr
|
5 |
from PIL import Image
|
6 |
-
|
7 |
|
8 |
target_folder = "Kang-Seong-Jun/Korean_Real_Estate_Classifier"
|
9 |
|
@@ -12,15 +12,6 @@ def load_model_and_preprocessor(target_folder):
|
|
12 |
image_processor = AutoImageProcessor.from_pretrained(target_folder)
|
13 |
return model, image_processor
|
14 |
|
15 |
-
def fetch_image(url):
|
16 |
-
headers = {
|
17 |
-
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36'
|
18 |
-
}
|
19 |
-
image_raw = requests.get(url, headers=headers, stream=True).raw
|
20 |
-
image = Image.open(image_raw)
|
21 |
-
|
22 |
-
return image
|
23 |
-
|
24 |
def infer_image(image, model, image_processor, k):
|
25 |
processed_img = image_processor(images=image.convert("RGB"), return_tensors="pt")
|
26 |
|
@@ -36,21 +27,19 @@ def infer_image(image, model, image_processor, k):
|
|
36 |
res += f"{idx+1}. {model.config.id2label[index.item()]:<15} ({prob.item()*100:.2f} %) \n"
|
37 |
return res
|
38 |
|
39 |
-
def infer(
|
40 |
-
try
|
41 |
-
image = fetch_image(url)
|
42 |
model, image_processor = load_model_and_preprocessor(target_folder)
|
43 |
-
res =
|
44 |
-
except :
|
45 |
image = Image.new('RGB', (224, 224))
|
46 |
-
res = "์ด๋ฏธ์ง๋ฅผ
|
47 |
return image, res
|
48 |
|
49 |
demo = gr.Interface(
|
50 |
fn=infer,
|
51 |
inputs=[
|
52 |
-
gr.
|
53 |
-
label="Image URL"),
|
54 |
gr.Slider(minimum=0, maximum=20, step=1, value=3, label="์์ ๋ช๊ฐ๊น์ง ๋ณด์ฌ์ค๊น์?")
|
55 |
],
|
56 |
outputs=[
|
@@ -59,4 +48,4 @@ demo = gr.Interface(
|
|
59 |
],
|
60 |
)
|
61 |
|
62 |
-
demo.launch()
|
|
|
1 |
|
2 |
+
import torch
|
3 |
import requests
|
4 |
import gradio as gr
|
5 |
from PIL import Image
|
6 |
+
from transformers import ResNetForImageClassification, AutoImageProcessor
|
7 |
|
8 |
target_folder = "Kang-Seong-Jun/Korean_Real_Estate_Classifier"
|
9 |
|
|
|
12 |
image_processor = AutoImageProcessor.from_pretrained(target_folder)
|
13 |
return model, image_processor
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
def infer_image(image, model, image_processor, k):
|
16 |
processed_img = image_processor(images=image.convert("RGB"), return_tensors="pt")
|
17 |
|
|
|
27 |
res += f"{idx+1}. {model.config.id2label[index.item()]:<15} ({prob.item()*100:.2f} %) \n"
|
28 |
return res
|
29 |
|
30 |
+
def infer(image, k, target_folder=target_folder):
|
31 |
+
try:
|
|
|
32 |
model, image_processor = load_model_and_preprocessor(target_folder)
|
33 |
+
res = infer_image(image, model, image_processor, k)
|
34 |
+
except Exception as e:
|
35 |
image = Image.new('RGB', (224, 224))
|
36 |
+
res = f"์ด๋ฏธ์ง๋ฅผ ์ฒ๋ฆฌํ๋๋ฐ ๋ฌธ์ ๊ฐ ๋ฐ์ํ์ต๋๋ค: {str(e)}"
|
37 |
return image, res
|
38 |
|
39 |
demo = gr.Interface(
|
40 |
fn=infer,
|
41 |
inputs=[
|
42 |
+
gr.Image(type="pil", label="์
๋ ฅ ์ด๋ฏธ์ง"),
|
|
|
43 |
gr.Slider(minimum=0, maximum=20, step=1, value=3, label="์์ ๋ช๊ฐ๊น์ง ๋ณด์ฌ์ค๊น์?")
|
44 |
],
|
45 |
outputs=[
|
|
|
48 |
],
|
49 |
)
|
50 |
|
51 |
+
demo.launch()
|