Spaces:
Configuration error
Configuration error
Kangarroar
commited on
Commit
·
109b016
1
Parent(s):
5f0548b
Delete slicer2.py
Browse files- slicer2.py +0 -260
slicer2.py
DELETED
@@ -1,260 +0,0 @@
|
|
1 |
-
import numpy as np
|
2 |
-
|
3 |
-
|
4 |
-
# This function is obtained from librosa.
|
5 |
-
def get_rms(
|
6 |
-
y,
|
7 |
-
frame_length=2048,
|
8 |
-
hop_length=512,
|
9 |
-
pad_mode="constant",
|
10 |
-
):
|
11 |
-
padding = (int(frame_length // 2), int(frame_length // 2))
|
12 |
-
y = np.pad(y, padding, mode=pad_mode)
|
13 |
-
|
14 |
-
axis = -1
|
15 |
-
# put our new within-frame axis at the end for now
|
16 |
-
out_strides = y.strides + tuple([y.strides[axis]])
|
17 |
-
# Reduce the shape on the framing axis
|
18 |
-
x_shape_trimmed = list(y.shape)
|
19 |
-
x_shape_trimmed[axis] -= frame_length - 1
|
20 |
-
out_shape = tuple(x_shape_trimmed) + tuple([frame_length])
|
21 |
-
xw = np.lib.stride_tricks.as_strided(y, shape=out_shape, strides=out_strides)
|
22 |
-
if axis < 0:
|
23 |
-
target_axis = axis - 1
|
24 |
-
else:
|
25 |
-
target_axis = axis + 1
|
26 |
-
xw = np.moveaxis(xw, -1, target_axis)
|
27 |
-
# Downsample along the target axis
|
28 |
-
slices = [slice(None)] * xw.ndim
|
29 |
-
slices[axis] = slice(0, None, hop_length)
|
30 |
-
x = xw[tuple(slices)]
|
31 |
-
|
32 |
-
# Calculate power
|
33 |
-
power = np.mean(np.abs(x) ** 2, axis=-2, keepdims=True)
|
34 |
-
|
35 |
-
return np.sqrt(power)
|
36 |
-
|
37 |
-
|
38 |
-
class Slicer:
|
39 |
-
def __init__(
|
40 |
-
self,
|
41 |
-
sr: int,
|
42 |
-
threshold: float = -40.0,
|
43 |
-
min_length: int = 5000,
|
44 |
-
min_interval: int = 300,
|
45 |
-
hop_size: int = 20,
|
46 |
-
max_sil_kept: int = 5000,
|
47 |
-
):
|
48 |
-
if not min_length >= min_interval >= hop_size:
|
49 |
-
raise ValueError(
|
50 |
-
"The following condition must be satisfied: min_length >= min_interval >= hop_size"
|
51 |
-
)
|
52 |
-
if not max_sil_kept >= hop_size:
|
53 |
-
raise ValueError(
|
54 |
-
"The following condition must be satisfied: max_sil_kept >= hop_size"
|
55 |
-
)
|
56 |
-
min_interval = sr * min_interval / 1000
|
57 |
-
self.threshold = 10 ** (threshold / 20.0)
|
58 |
-
self.hop_size = round(sr * hop_size / 1000)
|
59 |
-
self.win_size = min(round(min_interval), 4 * self.hop_size)
|
60 |
-
self.min_length = round(sr * min_length / 1000 / self.hop_size)
|
61 |
-
self.min_interval = round(min_interval / self.hop_size)
|
62 |
-
self.max_sil_kept = round(sr * max_sil_kept / 1000 / self.hop_size)
|
63 |
-
|
64 |
-
def _apply_slice(self, waveform, begin, end):
|
65 |
-
if len(waveform.shape) > 1:
|
66 |
-
return waveform[
|
67 |
-
:, begin * self.hop_size : min(waveform.shape[1], end * self.hop_size)
|
68 |
-
]
|
69 |
-
else:
|
70 |
-
return waveform[
|
71 |
-
begin * self.hop_size : min(waveform.shape[0], end * self.hop_size)
|
72 |
-
]
|
73 |
-
|
74 |
-
# @timeit
|
75 |
-
def slice(self, waveform):
|
76 |
-
if len(waveform.shape) > 1:
|
77 |
-
samples = waveform.mean(axis=0)
|
78 |
-
else:
|
79 |
-
samples = waveform
|
80 |
-
if samples.shape[0] <= self.min_length:
|
81 |
-
return [waveform]
|
82 |
-
rms_list = get_rms(
|
83 |
-
y=samples, frame_length=self.win_size, hop_length=self.hop_size
|
84 |
-
).squeeze(0)
|
85 |
-
sil_tags = []
|
86 |
-
silence_start = None
|
87 |
-
clip_start = 0
|
88 |
-
for i, rms in enumerate(rms_list):
|
89 |
-
# Keep looping while frame is silent.
|
90 |
-
if rms < self.threshold:
|
91 |
-
# Record start of silent frames.
|
92 |
-
if silence_start is None:
|
93 |
-
silence_start = i
|
94 |
-
continue
|
95 |
-
# Keep looping while frame is not silent and silence start has not been recorded.
|
96 |
-
if silence_start is None:
|
97 |
-
continue
|
98 |
-
# Clear recorded silence start if interval is not enough or clip is too short
|
99 |
-
is_leading_silence = silence_start == 0 and i > self.max_sil_kept
|
100 |
-
need_slice_middle = (
|
101 |
-
i - silence_start >= self.min_interval
|
102 |
-
and i - clip_start >= self.min_length
|
103 |
-
)
|
104 |
-
if not is_leading_silence and not need_slice_middle:
|
105 |
-
silence_start = None
|
106 |
-
continue
|
107 |
-
# Need slicing. Record the range of silent frames to be removed.
|
108 |
-
if i - silence_start <= self.max_sil_kept:
|
109 |
-
pos = rms_list[silence_start : i + 1].argmin() + silence_start
|
110 |
-
if silence_start == 0:
|
111 |
-
sil_tags.append((0, pos))
|
112 |
-
else:
|
113 |
-
sil_tags.append((pos, pos))
|
114 |
-
clip_start = pos
|
115 |
-
elif i - silence_start <= self.max_sil_kept * 2:
|
116 |
-
pos = rms_list[
|
117 |
-
i - self.max_sil_kept : silence_start + self.max_sil_kept + 1
|
118 |
-
].argmin()
|
119 |
-
pos += i - self.max_sil_kept
|
120 |
-
pos_l = (
|
121 |
-
rms_list[
|
122 |
-
silence_start : silence_start + self.max_sil_kept + 1
|
123 |
-
].argmin()
|
124 |
-
+ silence_start
|
125 |
-
)
|
126 |
-
pos_r = (
|
127 |
-
rms_list[i - self.max_sil_kept : i + 1].argmin()
|
128 |
-
+ i
|
129 |
-
- self.max_sil_kept
|
130 |
-
)
|
131 |
-
if silence_start == 0:
|
132 |
-
sil_tags.append((0, pos_r))
|
133 |
-
clip_start = pos_r
|
134 |
-
else:
|
135 |
-
sil_tags.append((min(pos_l, pos), max(pos_r, pos)))
|
136 |
-
clip_start = max(pos_r, pos)
|
137 |
-
else:
|
138 |
-
pos_l = (
|
139 |
-
rms_list[
|
140 |
-
silence_start : silence_start + self.max_sil_kept + 1
|
141 |
-
].argmin()
|
142 |
-
+ silence_start
|
143 |
-
)
|
144 |
-
pos_r = (
|
145 |
-
rms_list[i - self.max_sil_kept : i + 1].argmin()
|
146 |
-
+ i
|
147 |
-
- self.max_sil_kept
|
148 |
-
)
|
149 |
-
if silence_start == 0:
|
150 |
-
sil_tags.append((0, pos_r))
|
151 |
-
else:
|
152 |
-
sil_tags.append((pos_l, pos_r))
|
153 |
-
clip_start = pos_r
|
154 |
-
silence_start = None
|
155 |
-
# Deal with trailing silence.
|
156 |
-
total_frames = rms_list.shape[0]
|
157 |
-
if (
|
158 |
-
silence_start is not None
|
159 |
-
and total_frames - silence_start >= self.min_interval
|
160 |
-
):
|
161 |
-
silence_end = min(total_frames, silence_start + self.max_sil_kept)
|
162 |
-
pos = rms_list[silence_start : silence_end + 1].argmin() + silence_start
|
163 |
-
sil_tags.append((pos, total_frames + 1))
|
164 |
-
# Apply and return slices.
|
165 |
-
if len(sil_tags) == 0:
|
166 |
-
return [waveform]
|
167 |
-
else:
|
168 |
-
chunks = []
|
169 |
-
if sil_tags[0][0] > 0:
|
170 |
-
chunks.append(self._apply_slice(waveform, 0, sil_tags[0][0]))
|
171 |
-
for i in range(len(sil_tags) - 1):
|
172 |
-
chunks.append(
|
173 |
-
self._apply_slice(waveform, sil_tags[i][1], sil_tags[i + 1][0])
|
174 |
-
)
|
175 |
-
if sil_tags[-1][1] < total_frames:
|
176 |
-
chunks.append(
|
177 |
-
self._apply_slice(waveform, sil_tags[-1][1], total_frames)
|
178 |
-
)
|
179 |
-
return chunks
|
180 |
-
|
181 |
-
|
182 |
-
def main():
|
183 |
-
import os.path
|
184 |
-
from argparse import ArgumentParser
|
185 |
-
|
186 |
-
import librosa
|
187 |
-
import soundfile
|
188 |
-
|
189 |
-
parser = ArgumentParser()
|
190 |
-
parser.add_argument("audio", type=str, help="The audio to be sliced")
|
191 |
-
parser.add_argument(
|
192 |
-
"--out", type=str, help="Output directory of the sliced audio clips"
|
193 |
-
)
|
194 |
-
parser.add_argument(
|
195 |
-
"--db_thresh",
|
196 |
-
type=float,
|
197 |
-
required=False,
|
198 |
-
default=-40,
|
199 |
-
help="The dB threshold for silence detection",
|
200 |
-
)
|
201 |
-
parser.add_argument(
|
202 |
-
"--min_length",
|
203 |
-
type=int,
|
204 |
-
required=False,
|
205 |
-
default=5000,
|
206 |
-
help="The minimum milliseconds required for each sliced audio clip",
|
207 |
-
)
|
208 |
-
parser.add_argument(
|
209 |
-
"--min_interval",
|
210 |
-
type=int,
|
211 |
-
required=False,
|
212 |
-
default=300,
|
213 |
-
help="The minimum milliseconds for a silence part to be sliced",
|
214 |
-
)
|
215 |
-
parser.add_argument(
|
216 |
-
"--hop_size",
|
217 |
-
type=int,
|
218 |
-
required=False,
|
219 |
-
default=10,
|
220 |
-
help="Frame length in milliseconds",
|
221 |
-
)
|
222 |
-
parser.add_argument(
|
223 |
-
"--max_sil_kept",
|
224 |
-
type=int,
|
225 |
-
required=False,
|
226 |
-
default=500,
|
227 |
-
help="The maximum silence length kept around the sliced clip, presented in milliseconds",
|
228 |
-
)
|
229 |
-
args = parser.parse_args()
|
230 |
-
out = args.out
|
231 |
-
if out is None:
|
232 |
-
out = os.path.dirname(os.path.abspath(args.audio))
|
233 |
-
audio, sr = librosa.load(args.audio, sr=None, mono=False)
|
234 |
-
slicer = Slicer(
|
235 |
-
sr=sr,
|
236 |
-
threshold=args.db_thresh,
|
237 |
-
min_length=args.min_length,
|
238 |
-
min_interval=args.min_interval,
|
239 |
-
hop_size=args.hop_size,
|
240 |
-
max_sil_kept=args.max_sil_kept,
|
241 |
-
)
|
242 |
-
chunks = slicer.slice(audio)
|
243 |
-
if not os.path.exists(out):
|
244 |
-
os.makedirs(out)
|
245 |
-
for i, chunk in enumerate(chunks):
|
246 |
-
if len(chunk.shape) > 1:
|
247 |
-
chunk = chunk.T
|
248 |
-
soundfile.write(
|
249 |
-
os.path.join(
|
250 |
-
out,
|
251 |
-
f"%s_%d.wav"
|
252 |
-
% (os.path.basename(args.audio).rsplit(".", maxsplit=1)[0], i),
|
253 |
-
),
|
254 |
-
chunk,
|
255 |
-
sr,
|
256 |
-
)
|
257 |
-
|
258 |
-
|
259 |
-
if __name__ == "__main__":
|
260 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|