Kangarroar commited on
Commit
33de63c
·
1 Parent(s): 9dc665b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +44 -6
app.py CHANGED
@@ -1,6 +1,43 @@
1
  import gradio as gr
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
3
- model_path = get_model_path()
4
  demo = gr.Blocks()
5
  with demo:
6
  gr.Markdown("# **<p align='center'>DIFF-SVC Inference</p>**")
@@ -12,11 +49,12 @@ with demo:
12
  </p>
13
  """
14
  )
15
- gr.File(label= 'Load your CKPT')
16
- gr.File(label= 'Load your Config File')
17
-
18
  audio_file = gr.Audio(label = 'Load your WAV', type="filepath")
19
  gr.Slider(2, 20, value=4)
20
  b1 = gr.Button("Render")
21
- #b1.click(speech_to_text, inputs=audio_file, outputs=text)
22
- demo.launch()
 
 
 
1
  import gradio as gr
2
+ from utils.hparams import hparams
3
+ from preprocessing.data_gen_utils import get_pitch_parselmouth,get_pitch_crepe
4
+ import numpy as np
5
+ import matplotlib.pyplot as plt
6
+ import IPython.display as ipd
7
+ import utils
8
+ import librosa
9
+ import torchcrepe
10
+ from infer import *
11
+ import logging
12
+ from infer_tools.infer_tool import *
13
+ import io
14
+ def render_audio(audio_file):
15
+ print(audio_file)
16
+ ############
17
+ logging.getLogger('numba').setLevel(logging.WARNING)
18
+
19
+ # 工程文件夹名,训练时用的那个
20
+ project_name = "Unnamed"
21
+ model_path = f'./checkpoints/Unnamed/model_ckpt_steps_192000.ckpt'
22
+ config_path=f'./checkpoints/Unnamed/config.yaml'
23
+ hubert_gpu=False
24
+ svc_model = Svc(project_name,config_path,hubert_gpu, model_path)
25
+ print('model loaded')
26
+ wav_fn = audio_file
27
+ demoaudio, sr = librosa.load(wav_fn)
28
+ key = -8 # 音高调整,支持正负(半音)
29
+ # 加速倍数
30
+
31
+ pndm_speedup = 20
32
+ wav_gen='queeeeee.wav'#直接改后缀可以保存不同格式音频,如flac可无损压缩
33
+ f0_tst, f0_pred, audio = run_clip(svc_model,file_path=wav_fn, key=key, acc=pndm_speedup, use_crepe=True, use_pe=True, thre=0.05,
34
+ use_gt_mel=False, add_noise_step=500,project_name=project_name,out_path=wav_gen)
35
+
36
+
37
+
38
+ def segment(audio):
39
+ pass # Implement your image segmentation model here...
40
 
 
41
  demo = gr.Blocks()
42
  with demo:
43
  gr.Markdown("# **<p align='center'>DIFF-SVC Inference</p>**")
 
49
  </p>
50
  """
51
  )
52
+ ckpt_file = gr.File(label= 'Load your CKPT', type="file")
53
+ config_file = gr.File(label= 'Load your Config File', type="file")
 
54
  audio_file = gr.Audio(label = 'Load your WAV', type="filepath")
55
  gr.Slider(2, 20, value=4)
56
  b1 = gr.Button("Render")
57
+ b1.click(fn=render_audio, inputs=audio_file)
58
+
59
+
60
+ demo.launch()