File size: 24,265 Bytes
98e2ea5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
import torch
import torch.nn as nn

from model.mention_proposal import MentionProposalModule
from model.utils import get_gt_actions
from model.memory.entity_memory import EntityMemory
from torch.profiler import profile, record_function, ProfilerActivity

from typing import Dict, List, Tuple
from omegaconf import DictConfig
from torch import Tensor
from transformers import PreTrainedTokenizerFast

import logging
import random
from collections import defaultdict
import copy

import time

logging.basicConfig(format="%(asctime)s - %(message)s", level=logging.INFO)
logger = logging.getLogger()


class EntityRankingModel(nn.Module):
    """
    Coreference model based on Entity-Ranking paradigm.

    In the entity-ranking paradigm, given a new mention we rank the different
    entity clusters to determine the clustering updates. Entity-Ranking paradigm
    allows for a naturally scalable solution to coreference resolution.
    Reference: Rahman and Ng [https://arxiv.org/pdf/1405.5202.pdf]

    This particular implementation represents the entities/clusters via fixed-dimensional
    dense representations, typically a simple avereage of mention representations.
    Clustering is performed in an online, autoregressive manner where mentions are
    processed in a left-to-right manner.
    References:
            Toshniwal et al [https://arxiv.org/pdf/2010.02807.pdf]
      Toshniwal et al [https://arxiv.org/pdf/2109.09667.pdf]
    """

    def __init__(self, model_config: DictConfig, train_config: DictConfig):
        super(EntityRankingModel, self).__init__()
        self.config = model_config
        self.train_config = train_config

        # Dropout module - Used during training
        self.drop_module = nn.Dropout(p=train_config.dropout_rate)

        self.loss_template_dict = {
            "total": torch.tensor(0.0, requires_grad=True),
            "ment_loss": torch.tensor(0.0),
            "coref": torch.tensor(0.0),
            "mention_count": torch.tensor(0.0),
            "ment_correct": torch.tensor(0.001),
            "ment_total": torch.tensor(0.001),
            "ment_tp": torch.tensor(0.001),
            "ment_pp": torch.tensor(0.001),
            "ment_ap": torch.tensor(0.001),
        }

        # Document encoder + Mention proposer
        self.mention_proposer = MentionProposalModule(
            self.config, train_config, drop_module=self.drop_module
        )

        # Clustering module
        span_emb_size: int = self.mention_proposer.span_emb_size
        # Use of genre feature in clustering or not
        if self.config.metadata_params.use_genre_feature:
            self.config.memory.num_feats = 3

        self.mem_type = self.config.memory.mem_type.name

        self.memory_net = EntityMemory(
            config=self.config.memory,
            span_emb_size=span_emb_size,
            drop_module=self.drop_module,
        )

        self.loss_fn = nn.CrossEntropyLoss(
            label_smoothing=self.train_config.label_smoothing_wt
        )

        if self.config.metadata_params.use_genre_feature:
            self.genre_embeddings = nn.Embedding(
                num_embeddings=len(self.config.metadata_params.genres),
                embedding_dim=self.config.mention_params.emb_size,
            )

    @property
    def device(self) -> torch.device:
        return self.mention_proposer.device

    def get_params(self, named=False) -> Tuple[List, List]:
        """Returns a tuple of document encoder parameters and rest of the model params."""

        encoder_params, mem_params = [], []
        for name, param in self.named_parameters():
            elem = (name, param) if named else param
            if "doc_encoder" in name:
                encoder_params.append(elem)
            else:
                mem_params.append(elem)

        return encoder_params, mem_params

    def get_tokenizer(self) -> PreTrainedTokenizerFast:
        """Returns tokenizer used by the document encoder."""

        return self.mention_proposer.doc_encoder.get_tokenizer()

    def get_metadata(self, document: Dict) -> Dict:
        """Extract metadata such as document genre from document."""

        meta_params = self.config.metadata_params
        if meta_params.use_genre_feature:
            doc_class = document["doc_key"][:2]
            if doc_class in meta_params.genres:
                doc_class_idx = meta_params.genres.index(doc_class)
            else:
                doc_class_idx = meta_params.genres.index(
                    meta_params.default_genre
                )  # Default genre

            return {
                "genre": self.genre_embeddings(
                    torch.tensor(doc_class_idx, device=self.device)
                )
            }
        else:
            return {}

    def calculate_coref_loss(
        self, action_prob_list: List, action_tuple_list: List[Tuple[int, str]]
    ) -> Tensor:
        """Calculates the coreference loss for the autoregressive online clustering module.

        Args:
                action_prob_list (List):
                        Probability of each clustering action i.e. mention is merged with existing clusters
                        or a new cluster is created.
                action_tuple_list (List[Tuple[int, str]]):
                        Ground truth actions represented as a tuple of cluster index and action string.
                        'c' represents that the mention is coreferent with existing clusters while
                        'o' represents that the mention represents a new cluster.

        Returns:
                coref_loss (torch.Tensor):
                        The scalar tensor representing the coreference loss.
        """
        counter = 0
        correct = 0
        coref_loss = torch.tensor(0.0, device=self.device)
        num_predictions_clusters = defaultdict(int)
        for idx, (cell_idx, action_str) in enumerate(action_tuple_list):
            if action_str == "c":
                ## Major Entity
                gt_idx = cell_idx

            elif action_str == "o":
                ## Other Entity
                gt_idx = action_prob_list[counter].shape[0] - 1

            else:
                continue

            target = torch.tensor([gt_idx], device=self.device)
            if target[0] == torch.argmax(
                torch.unsqueeze(action_prob_list[counter], dim=0)
            ):
                correct += 1
            num_predictions_clusters[
                torch.argmax(torch.unsqueeze(action_prob_list[counter], dim=0)).item()
            ] += 1
            coref_loss += self.loss_fn(
                torch.unsqueeze(action_prob_list[counter], dim=0), target
            )

            counter += 1
        return coref_loss

    @staticmethod
    def get_filtered_clusters(
        clusters,
        init_token_offset,
        final_token_offset,
        cluster_mask=None,
        with_offset=True,
    ):
        """Filter clusters from a document given the token offsets."""
        """Note that len(cluster_mask) == len(clusters) assured in the previous function."""

        filt_clusters = []
        no_rep_cluster_mentions = (
            []
        )  ## Mentions that belonged to a major entity whose representative phrase is not part of the current mentions.
        for cluster_ind, orig_cluster in enumerate(clusters):
            cluster = []
            for ment_start, ment_end in orig_cluster:
                if ment_start >= init_token_offset and ment_end < final_token_offset:
                    if with_offset:
                        cluster.append((ment_start, ment_end))
                    else:
                        cluster.append(
                            (
                                ment_start - init_token_offset,
                                ment_end - init_token_offset,
                            )
                        )
            if len(cluster) != 0:
                if (
                    cluster_mask
                ):  ## During this process if we missed any representative phrases, all clusters that have no representative phrase will be added to the last cluster.
                    if (
                        cluster_mask[cluster_ind] == True
                    ):  ## If representative phrase is in the current segment then, there exists atleast one mention that belongs to the cluster. But anyways
                        filt_clusters.append(cluster)
                    else:
                        no_rep_cluster_mentions.extend(cluster)
                else:
                    filt_clusters.append(cluster)

        if cluster_mask:
            if len(filt_clusters) == 0:
                filt_clusters.append(no_rep_cluster_mentions)
            else:
                filt_clusters[-1].extend(no_rep_cluster_mentions)

        return filt_clusters

    @staticmethod
    def get_filtered_representatives(
        representatives, init_token_offset, final_token_offset, with_offset=True
    ):
        """Filter clusters from a document given the token offsets."""
        filt_reps = []
        indices = []
        for rep_ind, (ment_start, ment_end) in enumerate(representatives):
            if ment_start >= init_token_offset and ment_end < final_token_offset:
                if with_offset:
                    filt_reps.append((ment_start, ment_end))
                else:
                    filt_reps.append(
                        (
                            ment_start - init_token_offset,
                            ment_end - init_token_offset,
                        )
                    )
                indices.append(rep_ind)
        return filt_reps, indices

    @staticmethod
    def mask_representative_phrases(rep_emb_list):
        positive_inds = []
        for rep_emb_ind, rep_emb in enumerate(rep_emb_list):
            if not isinstance(rep_emb, int):
                positive_inds.append(rep_emb_ind)

        if len(positive_inds) > 1:
            num_entitites_preserved = random.randint(1, len(positive_inds))
            random.shuffle(positive_inds)
            for ind in positive_inds[num_entitites_preserved:]:
                rep_emb_list[ind] = -1

        return rep_emb_list

    def forward_training(self, document: Dict) -> Dict:
        """Forward pass for training.

        Args:
                document: The tensorized document.

        Returns:
                loss_dict (Dict): Loss dictionary containing the losses of different stages of the model.
        """
        # print(document["doc_key"])

        assert (
            len(document["clusters"]) == len(document["representatives"]) + 1
        ), "Length of clusters not equal to length of representatives + 1."
        assert document["representatives"] == sorted(
            document["representatives"]
        ), "Representatives are not sorted."

        loss_dict = copy.deepcopy(self.loss_template_dict)
        max_training_segments = self.train_config.get("max_training_segments", None)
        num_segments = len(document["sentences"])
        if max_training_segments is None:
            seg_range = [0, num_segments]
        else:
            if num_segments > max_training_segments:
                start_seg = random.randint(0, num_segments - max_training_segments)
                seg_range = [start_seg, start_seg + max_training_segments]
            else:
                seg_range = [0, num_segments]

        # Initialize lists to track all the mentions predicted across the chunks
        pred_mentions_list, mention_emb_list, rep_emb_list = (
            [],
            [],
            [-1 for _ in range(len(document["representatives"]))],
        )
        init_token_offset = sum(
            [len(document["sentences"][idx]) for idx in range(0, seg_range[0])]
        )
        token_offset = init_token_offset

        # Metadata such as document genre can be used by model for clustering
        metadata = self.get_metadata(document)

        # Initialize the mention loss
        ment_loss = None

        # Step 1: Predict all the mentions
        for idx in range(seg_range[0], seg_range[1]):

            num_tokens = len(document["sentences"][idx])

            representatives_entities, rep_filtered_inds = (
                self.get_filtered_representatives(
                    document["representatives"],
                    token_offset,
                    token_offset + num_tokens,
                    with_offset=False,
                )
            )
            cur_doc_slice = {
                "tensorized_sent": document["tensorized_sent"][idx],
                "sentence_map": document["sentence_map"][
                    token_offset : token_offset + num_tokens
                ],
                "subtoken_map": document["subtoken_map"][
                    token_offset : token_offset + num_tokens
                ],
                "sent_len_list": [document["sent_len_list"][idx]],
                "clusters": self.get_filtered_clusters(
                    document["clusters"],
                    token_offset,
                    token_offset + num_tokens,
                    with_offset=False,
                ),
                "representatives": representatives_entities,
                "doc_key": document["doc_key"],
            }

            ## No golden mentions in the current segment and mode is golden so basically no job to do.
            if (
                len(cur_doc_slice["clusters"]) == 0
                and self.mention_proposer.config.mention_params.use_gold_ments
            ):
                token_offset += num_tokens
                continue

            proposer_output_dict = self.mention_proposer(cur_doc_slice, eval_loss=True)

            ### Shifted above because if the model predicts no mentions then earlier it had no mention loss. But now it has.
            if "ment_loss" in proposer_output_dict:
                if ment_loss is None:
                    ment_loss = proposer_output_dict["ment_loss"]
                else:
                    ment_loss += proposer_output_dict["ment_loss"]

            ## If no mentions are predicted, originally then no coref loss and surprisingly no mention loss as well :)
            if proposer_output_dict.get("ments", None) is None:
                token_offset += num_tokens
                continue

            ## Mention post-processing and collection happens here: Add the document offset to mentions predicted for the current chunk
            cur_pred_mentions = proposer_output_dict.get("ments") + token_offset
            pred_mentions_list.extend(cur_pred_mentions.tolist())
            mention_emb_list.extend(proposer_output_dict["ment_emb_list"])
            for key in ["ment_correct", "ment_total", "ment_tp", "ment_pp", "ment_ap"]:
                if key in proposer_output_dict:
                    loss_dict[key] += proposer_output_dict[key]

            ## Collect representation embeddings:
            for ind, rep_ind in enumerate(rep_filtered_inds):
                rep_emb_list[rep_ind] = proposer_output_dict["rep_emb_list"][ind]

            # Update the document offset for next iteration
            token_offset += num_tokens

        ## Collect mention detection loss
        if ment_loss is not None:
            ## Tried training the model with only mention loss, but it did not work well.
            if self.train_config.ment_loss_incl:
                loss_dict["total"] = ment_loss
            loss_dict["ment_loss"] = ment_loss

        # Step 2: Perform clustering
        # Get clusters part of the truncated document

        ## select certain entities or representatives
        if self.train_config.get("generalise", False):
            rep_emb_list = self.mask_representative_phrases(rep_emb_list)

        rep_emb_list_filtered = []
        entities_mask = []

        for rep_emb in rep_emb_list:
            if not isinstance(rep_emb, int):
                rep_emb_list_filtered.append(rep_emb)
                entities_mask.append(True)
            else:
                entities_mask.append(False)
        ## For the other cluster that contains all the mentions that do not belong to any representative phrase.
        entities_mask.append(True)

        truncated_document_clusters = {
            "clusters": self.get_filtered_clusters(
                document["clusters"],
                init_token_offset,
                token_offset,
                cluster_mask=entities_mask,
            )
        }

        assert (
            len(document["clusters"]) == len(document["representatives"]) + 1
        ), "Number of clusters and representatives after segmentation do not match."

        # Get ground truth clustering mentions
        gt_actions: List[Tuple[int, str]] = get_gt_actions(
            pred_mentions_list, truncated_document_clusters, self.config.memory.mem_type
        )

        pred_mentions = torch.tensor(pred_mentions_list, device=self.device)

        if (
            len(rep_emb_list_filtered) == 0
        ):  ## No representative phrases in the current segments, so no coref loss
            return loss_dict

        coref_new_list = self.memory_net.forward_training(
            pred_mentions, mention_emb_list, rep_emb_list_filtered, gt_actions, metadata
        )

        if len(coref_new_list) > 0:
            coref_loss = self.calculate_coref_loss(coref_new_list, gt_actions)
            loss_dict["total"] = loss_dict["total"] + coref_loss
            loss_dict["coref"] = coref_loss
            loss_dict["mention_count"] += torch.tensor(len(coref_new_list))

        return loss_dict

    def forward(self, document: Dict, teacher_force=False, gold_mentions=False):
        """Forward pass of the streaming coreference model.

        This method performs streaming coreference. The entity clusters from previous
        documents chunks are represented as vectors and passed along to the processing
        of subsequent chunks along with the metadata associated with these clusters.

        Args:
                document (Dict): Tensorized document

        Returns:
                 pred_mentions_list (List): Mentions predicted by the mention proposal module
                 mention_scores (List): Scores assigned by the mention proposal module for
                      the predicted mentions
                 gt_actions (List): Ground truth clustering actions; useful for calculating oracle performance
                 action_list (List): Actions predicted by the clustering module for the predicted mentions
        '"""

        # Initialize lists to track all the actions taken, mentions predicted across the chunks
        assert document["representatives"] == sorted(
            document["representatives"]
        ), "Representatives are not sorted."

        print("Device: ", self.device)
        print("#" * 40)
        pred_mentions_list, pred_mention_emb_list, mention_scores, pred_actions = (
            [],
            [],
            [],
            [],
        )
        # Initialize entity clusters and current document token offset
        entity_cluster_states, token_offset = None, 0

        metadata = self.get_metadata(document)
        coref_scores_doc = []

        link_time = 0.0

        for idx in range(0, len(document["sentences"])):
            num_tokens = len(document["sentences"][idx])

            new_representatives_entities, rep_filtered_inds = (
                self.get_filtered_representatives(
                    document["representatives"],
                    token_offset,
                    token_offset + num_tokens,
                    with_offset=False,
                )
            )

            ext_predicted_mentions_filt, _ = self.get_filtered_representatives(
                document.get("ext_predicted_mentions", []),
                token_offset,
                token_offset + num_tokens,
                with_offset=False,
            )

            cur_example = {
                "tensorized_sent": document["tensorized_sent"][idx],
                "sentence_map": document["sentence_map"][
                    token_offset : token_offset + num_tokens
                ],
                "subtoken_map": document["subtoken_map"][
                    token_offset : token_offset + num_tokens
                ],
                "sent_len_list": [document["sent_len_list"][idx]],
                "clusters": self.get_filtered_clusters(
                    document["clusters"],
                    token_offset,
                    token_offset + num_tokens,
                    with_offset=False,
                ),
                "representatives": new_representatives_entities,
                "ext_predicted_mentions": ext_predicted_mentions_filt,
            }

            # Pass along other metadata
            for key in document:
                if key not in cur_example:
                    cur_example[key] = document[key]

            if len(cur_example["clusters"]) == 0 and (
                self.mention_proposer.config.mention_params.use_gold_ments
                or gold_mentions
            ):
                token_offset += num_tokens
                continue

            proposer_output_dict = self.mention_proposer(
                cur_example, gold_mentions=gold_mentions
            )

            if proposer_output_dict.get("ments", None) is None:
                token_offset += num_tokens
                continue

            # Add the document offset to mentions predicted for the current chunk
            # It's important to add the offset before clustering because features like
            # number of tokens between the last mention of the cluster and the current mention
            # will be affected if the current token indices of the mention are not supplied.
            cur_pred_mentions = proposer_output_dict.get("ments") + token_offset

            # Update the document offset for next iteration
            token_offset += num_tokens

            # Get ground truth clustering mentions
            pred_mentions_list.extend(cur_pred_mentions.tolist())
            gt_actions_full: List[Tuple[int, str]] = get_gt_actions(
                pred_mentions_list, document, self.config.memory.mem_type
            )
            gt_actions = gt_actions_full[-len(cur_pred_mentions.tolist()) :]

            pred_mention_emb_list.extend(
                [emb.tolist() for emb in proposer_output_dict.get("ment_emb_list")]
            )
            mention_scores.extend(proposer_output_dict["ment_scores"].tolist())

            start_time = time.time()

            repr_candidates = list(proposer_output_dict["rep_emb_list"])

            # Pass along entity clusters from previous chunks while processing next chunks
            cur_pred_actions, entity_cluster_states, coref_scores_list = (
                self.memory_net(
                    cur_pred_mentions,
                    list(proposer_output_dict["ment_emb_list"]),
                    repr_candidates,
                    gt_actions,
                    metadata,
                    teacher_force=teacher_force,
                    memory_init=entity_cluster_states,
                )
            )
            link_time += time.time() - start_time
            # print(
            #     "Number of representatives available now: ",
            #     entity_cluster_states["mem"].shape[0],
            # )
            pred_actions.extend(cur_pred_actions)
            coref_scores_doc.extend(coref_scores_list)

        gt_actions = get_gt_actions(
            pred_mentions_list, document, self.config.memory.mem_type
        )  # Useful for oracle calcs

        for ind in range(len(coref_scores_doc)):
            coref_scores_doc[ind] = coref_scores_doc[ind].tolist()

        if entity_cluster_states is not None:
            for key in entity_cluster_states:
                entity_cluster_states[key] = entity_cluster_states[key].tolist()

        return (
            pred_mentions_list,
            pred_mention_emb_list,
            mention_scores,
            gt_actions,
            pred_actions,
            coref_scores_doc,
            entity_cluster_states,
            link_time,
        )