File size: 13,066 Bytes
98e2ea5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7f75f6
98e2ea5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
import torch
import torch.nn as nn
from pytorch_utils.modules import MLP
import math
from omegaconf import DictConfig
from typing import Dict, Tuple
from torch import Tensor

LOG2 = math.log(2)


class BaseMemory(nn.Module):
    """Base clustering module."""

    def __init__(self, config: DictConfig, span_emb_size: int, drop_module: nn.Module):
        super(BaseMemory, self).__init__()
        self.config = config

        self.mem_size = span_emb_size
        self.drop_module = drop_module

        if self.config.sim_func == "endpoint":
            num_embs = 2  # Span start, Span end
        else:
            num_embs = 3  # Span start, Span end, Hadamard product between the two

        self.mem_coref_mlp = MLP(
            num_embs * self.mem_size + config.num_feats * config.emb_size,
            config.mlp_size,
            1,
            drop_module=drop_module,
            num_hidden_layers=config.mlp_depth,
            bias=True,
        )

        if config.entity_rep == "learned_avg":
            # Parameter for updating the cluster representation
            self.alpha = MLP(
                2 * self.mem_size,
                config.mlp_size,
                1,
                num_hidden_layers=1,
                bias=True,
                drop_module=drop_module,
            )

        if config.pseudo_dist:
            self.distance_embeddings = nn.Embedding(
                self.config.num_embeds + 1, config.emb_size
            )
        else:
            self.distance_embeddings = nn.Embedding(
                self.config.num_embeds, config.emb_size
            )

        self.counter_embeddings = nn.Embedding(self.config.num_embeds, config.emb_size)

    @property
    def device(self) -> torch.device:
        return next(self.mem_coref_mlp.parameters()).device

    def initialize_memory(
        self,
        mem: Tensor = None,
        mem_init: Tensor = None,
        ent_counter: Tensor = None,
        last_mention_start: Tensor = None,
        rep=[],
        **kwargs
    ) -> Tuple[Tensor, Tensor, Tensor]:
        """Method to initialize the clusters and related bookkeeping variables."""
        # Check for unintialized memory
        if mem is None or ent_counter is None or last_mention_start is None:
            mem = torch.zeros(len(rep), self.mem_size).to(self.device)
            mem_init = torch.zeros(len(rep), self.mem_size).to(self.device)

            for idx, rep_vec in enumerate(rep):
                mem[idx] = rep_vec
                mem_init[idx] = rep_vec

            ent_counter = torch.tensor([1.0] * len(rep)).to(self.device)
            last_mention_start = -torch.ones(len(rep)).long().to(self.device)

        elif len(rep):
            for rep_emb in rep:
                mem = torch.cat([mem, rep_emb.unsqueeze(0).to(self.device)], dim=0)
                mem_init = torch.cat(
                    [mem_init, rep_emb.unsqueeze(0).to(self.device)], dim=0
                )
                ent_counter = torch.cat(
                    [ent_counter, torch.tensor([1.0]).to(self.device)]
                )
                last_mention_start = torch.cat(
                    [last_mention_start, torch.tensor([-1]).to(self.device)]
                )

        return mem, mem_init, ent_counter, last_mention_start

    @staticmethod
    def get_bucket(count: Tensor) -> Tensor:
        """Bucket distance and entity counters using the same logic."""

        logspace_idx = (
            torch.floor(
                torch.log(torch.max(count.float(), torch.tensor(1.0))) / LOG2
            ).long()
            + 3
        )
        use_identity = (count <= 4).long()
        combined_idx = use_identity * count + (1 - use_identity) * logspace_idx
        return torch.clamp(combined_idx, 0, 9)

    @staticmethod
    def get_distance_bucket(distances: Tensor) -> Tensor:
        return BaseMemory.get_bucket(distances)

    @staticmethod
    def get_counter_bucket(count: Tensor) -> Tensor:
        return BaseMemory.get_bucket(count)

    def get_distance_emb(self, distance: Tensor) -> Tensor:
        distance_tens = self.get_distance_bucket(distance)
        distance_embs = self.distance_embeddings(distance_tens)
        return distance_embs

    def get_counter_emb(self, ent_counter: Tensor) -> Tensor:
        counter_buckets = self.get_counter_bucket(ent_counter.long())
        counter_embs = self.counter_embeddings(counter_buckets)
        return counter_embs

    @staticmethod
    def get_coref_mask(ent_counter: Tensor) -> Tensor:
        """Mask for whether the cluster representation corresponds to any entity or not."""
        cell_mask = (ent_counter > 0.0).float()
        return cell_mask

    def get_feature_embs_tensorized(
        self,
        ment_start: Tensor,  ## [B]
        last_mention_start: Tensor,  ## [E]
        ent_counter: Tensor,  ## [E]
        metadata: Dict,  ## [Assuming no metadata]
    ):
        ## Return [B, E, 20]
        ## Get distance embeddings
        distance_embs = self.distance_embeddings(
            torch.tensor(self.config.num_embeds).long().to(self.device)
        ).repeat(
            ment_start.shape[0], last_mention_start.shape[0], 1
        )  ## [B, D, 20]
        ## Get counter embeddings
        ent_counter_batch = ent_counter.unsqueeze(0).repeat(
            ment_start.shape[0], 1
        )  ## [B, E]
        counter_embs = self.get_counter_emb(ent_counter_batch)  ## [B, E, 20]
        feature_embs_list = [distance_embs, counter_embs]
        feature_embs = self.drop_module(torch.cat(feature_embs_list, dim=-1))
        return feature_embs

    def get_feature_embs(
        self,
        ment_start: Tensor,
        last_mention_start: Tensor,
        ent_counter: Tensor,
        metadata: Dict,
    ) -> Tensor:

        distance_embs = self.get_distance_emb(ment_start - last_mention_start)
        if self.config.pseudo_dist:
            rep_distance_mask = (last_mention_start < 0).unsqueeze(1).float()
            rep_distance_embs = self.distance_embeddings(
                torch.tensor(self.config.num_embeds).long().to(self.device)
            ).repeat(last_mention_start.shape[0], 1)
            distance_embs = (
                distance_embs * (1 - rep_distance_mask)
                + rep_distance_embs * rep_distance_mask
            )

        counter_embs = self.get_counter_emb(ent_counter)

        feature_embs_list = [distance_embs, counter_embs]

        if "genre" in metadata:
            genre_emb = metadata["genre"]
            num_ents = distance_embs.shape[0]
            genre_emb = torch.unsqueeze(genre_emb, dim=0).repeat(num_ents, 1)
            feature_embs_list.append(genre_emb)

        feature_embs = self.drop_module(torch.cat(feature_embs_list, dim=-1))
        return feature_embs

    def get_coref_new_scores_tensorized(
        self,
        ment_emb: Tensor,  ## [B,D]
        mem_vectors: Tensor,  ## [E,D]
        mem_vectors_init: Tensor,  ## [E,D] ## Not used here
        ent_counter: Tensor,  ## not used here
        feature_embs: Tensor,  ## [B,E,20]
    ) -> Tensor:
        rep_ment_emb = ment_emb.unsqueeze(1).repeat(
            1, mem_vectors.shape[0], 1
        )  ## [B,E,D]
        rep_mem_vectors = mem_vectors.unsqueeze(0).repeat(
            ment_emb.shape[0], 1, 1
        )  ## [B,E,D]
        pair_vec = torch.cat(
            [
                rep_mem_vectors,
                rep_ment_emb,
                rep_mem_vectors * rep_ment_emb,
                feature_embs,
            ],
            dim=-1,
        )  ## [B,E,3D+20]

        # print(pair_vec)
        pair_score = self.mem_coref_mlp(pair_vec)
        coref_score = torch.squeeze(pair_score, dim=-1)  # [B,E]
        # zero_col = torch.zeros(coref_score.shape[0], 1).to(self.device)
        base_col = (
            torch.ones(coref_score.shape[0], 1).to(self.device) * self.config.thresh
        )
        coref_new_score = torch.cat([coref_score, base_col], dim=-1)  ## [B,E+1]

        return coref_new_score

    def get_coref_new_scores(
        self,
        ment_emb: Tensor,
        mem_vectors: Tensor,
        mem_vectors_init: Tensor,
        ent_counter: Tensor,
        feature_embs: Tensor,
    ) -> Tensor:
        """Calculate the coreference score with existing clusters.

        For creating a new cluster we use a dummy score of 0.
        This is a free variable and this idea is borrowed from Lee et al 2017

        Args:
                        ment_emb (d'): Mention representation
                        mem_vectors (M x d'): Cluster representations
                        ent_counter (M): Mention counter of clusters.
                        feature_embs (M x p): Embedding of features such as distance from last
                                        mention of the cluster.

        Returns:
                        coref_new_score (M + 1):
                                        Coref scores concatenated with the score of forming a new cluster.
        """

        # Repeat the query vector for comparison against all cells
        num_ents = mem_vectors.shape[0]
        rep_ment_emb = ment_emb.repeat(num_ents, 1)  # M x H

        # Coref Score
        if self.config.sim_func == "endpoint":
            pair_vec = torch.cat([mem_vectors, rep_ment_emb, feature_embs], dim=-1)
            pair_score = self.mem_coref_mlp(pair_vec)

            if self.config.type == "hybrid":
                ## Adding pairwise similarity with initial memory
                pair_vec_init = torch.cat(
                    [mem_vectors_init, rep_ment_emb, feature_embs], dim=-1
                )
                pair_score_init = self.mem_coref_mlp(pair_vec_init)
                pair_score = pair_score + pair_score_init

        else:

            ## Pairwise similarity score generated with mem. mem is dynamic when type is not static
            pair_vec = torch.cat(
                [mem_vectors, rep_ment_emb, mem_vectors * rep_ment_emb, feature_embs],
                dim=-1,
            )

            pair_score = self.mem_coref_mlp(pair_vec)

            if self.config.type == "hybrid":
                ## Adding pairwise similarity with initial memory
                pair_vec_init = torch.cat(
                    [
                        mem_vectors_init,
                        rep_ment_emb,
                        mem_vectors_init * rep_ment_emb,
                        feature_embs,
                    ],
                    dim=-1,
                )
                pair_score_init = self.mem_coref_mlp(pair_vec_init)  ## Static score
                pair_score = (
                    pair_score + pair_score_init
                )  ## Similarity score with current repr. and initial repr.

        coref_score = torch.squeeze(pair_score, dim=-1)  # M

        coref_new_mask = torch.cat(
            [self.get_coref_mask(ent_counter), torch.tensor([1.0], device=self.device)],
            dim=0,
        )

        # Use a dummy score of 0 for froming a new cluster
        # print("Threshold: ", self.config.thresh)
        coref_new_score = torch.cat(
            ([coref_score, torch.tensor([self.config.thresh], device=self.device)]),
            dim=0,
        )
        coref_new_score = coref_new_score * coref_new_mask + (1 - coref_new_mask) * (
            -1e4
        )

        return coref_new_score

    @staticmethod
    def assign_cluster_tensorized(coref_new_scores: Tensor) -> Tuple[int, str]:
        """Decode the action from argmax of clustering scores"""
        ## coref_new_scores : [B,E+1]
        num_ents = coref_new_scores.shape[-1] - 1
        pred_max_idx = torch.argmax(coref_new_scores, dim=-1).tolist()  ## [B]
        action_str = ["c" if idx < num_ents else "o" for idx in pred_max_idx]
        return zip(pred_max_idx, action_str)

    @staticmethod
    def assign_cluster(coref_new_scores: Tensor) -> Tuple[int, str]:
        """Decode the action from argmax of clustering scores"""

        num_ents = coref_new_scores.shape[0] - 1
        pred_max_idx = torch.argmax(coref_new_scores).item()
        if pred_max_idx < num_ents:
            # Coref
            return pred_max_idx, "c"
        else:
            # New cluster
            return num_ents, "o"

    def coref_update(
        self, ment_emb: Tensor, mem_vectors: Tensor, cell_idx: int, ent_counter: Tensor
    ) -> Tensor:
        """Updates the cluster representation given the new mention representation."""

        if self.config.entity_rep == "learned_avg":
            alpha_wt = torch.sigmoid(
                self.alpha(torch.cat([mem_vectors[cell_idx], ment_emb], dim=0))
            )
            coref_vec = alpha_wt * mem_vectors[cell_idx] + (1 - alpha_wt) * ment_emb
        elif self.config.entity_rep == "max":
            coref_vec = torch.max(mem_vectors[cell_idx], ment_emb)
        else:
            cluster_count = ent_counter[cell_idx].item()
            coref_vec = (mem_vectors[cell_idx] * cluster_count + ment_emb) / (
                cluster_count + 1
            )

        return coref_vec