File size: 7,753 Bytes
ec78133
 
be6287e
 
 
 
21c1512
be6287e
21c1512
be6287e
53f9f8d
ec78133
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f89174
43986c9
5ce216b
 
43986c9
 
 
ec78133
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43986c9
b92854c
5ab9daa
43986c9
 
5ce216b
ec78133
43986c9
b92854c
43986c9
 
 
 
 
 
 
 
 
322295e
43986c9
1ead5ce
f045577
 
43986c9
d0dfe51
 
 
 
 
 
b92854c
43986c9
5ab9daa
b92854c
 
 
 
7a18d38
159151c
5ab9daa
 
b92854c
 
 
 
 
 
 
5ab9daa
ec78133
 
 
 
b92854c
ec78133
b92854c
 
ec78133
 
 
b92854c
 
ec78133
b92854c
 
ec78133
 
 
b92854c
 
 
 
 
 
 
 
ec78133
 
 
 
b92854c
 
0e3ff13
5ab9daa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b92854c
5ab9daa
 
b92854c
2b9a061
5ab9daa
 
b92854c
5ab9daa
 
 
f719658
fb7314a
 
5ab9daa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
# !git clone https://github.com/Edresson/Coqui-TTS -b multilingual-torchaudio-SE TTS

from TTS.utils.manage import ModelManager
from TTS.utils.synthesizer import Synthesizer

manager = ModelManager()
model_path1, config_path1, model_item = manager.download_model("tts_models/zh-CN/baker/tacotron2-DDC-GST")
synthesizer = Synthesizer(
    model_path1, config_path1, None, None, None,
)

import os
import shutil
import gradio as gr

import sys

import string
import time
import argparse
import json

import numpy as np
# import IPython
# from IPython.display import Audio

import torch

from TTS.tts.utils.synthesis import synthesis
from TTS.tts.utils.text.symbols import make_symbols, phonemes, symbols
try:
  from TTS.utils.audio import AudioProcessor
except:
  from TTS.utils.audio import AudioProcessor


from TTS.tts.models import setup_model
from TTS.config import load_config
from TTS.tts.models.vits import *

from TTS.tts.utils.speakers import SpeakerManager
from pydub import AudioSegment

# from google.colab import files
import librosa

from scipy.io.wavfile import write, read

import subprocess

import openai

mes = [
    {"role": "system", "content": "You are my personal assistant. Try to be helpful. Respond to me only in Chinese."}
]


'''
from google.colab import drive
drive.mount('/content/drive')

src_path = os.path.join(os.path.join(os.path.join(os.path.join(os.getcwd(), 'drive'), 'MyDrive'), 'Colab Notebooks'), 'best_model_latest.pth.tar')
dst_path = os.path.join(os.getcwd(), 'best_model.pth.tar')

shutil.copy(src_path, dst_path)
'''

TTS_PATH = "TTS/"

# add libraries into environment
sys.path.append(TTS_PATH) # set this if TTS is not installed globally

# Paths definition

OUT_PATH = 'out/'

# create output path
os.makedirs(OUT_PATH, exist_ok=True)

# model vars 
MODEL_PATH = 'best_model.pth.tar'
CONFIG_PATH = 'config.json'
TTS_LANGUAGES = "language_ids.json"
TTS_SPEAKERS = "speakers.json"
USE_CUDA = torch.cuda.is_available()

# load the config
C = load_config(CONFIG_PATH)

# load the audio processor
ap = AudioProcessor(**C.audio)

speaker_embedding = None

C.model_args['d_vector_file'] = TTS_SPEAKERS
C.model_args['use_speaker_encoder_as_loss'] = False

model = setup_model(C)
model.language_manager.set_language_ids_from_file(TTS_LANGUAGES)
# print(model.language_manager.num_languages, model.embedded_language_dim)
# print(model.emb_l)
cp = torch.load(MODEL_PATH, map_location=torch.device('cpu'))
# remove speaker encoder
model_weights = cp['model'].copy()
for key in list(model_weights.keys()):
  if "speaker_encoder" in key:
    del model_weights[key]

model.load_state_dict(model_weights)

model.eval()

if USE_CUDA:
    model = model.cuda()

# synthesize voice
use_griffin_lim = False

# Paths definition

CONFIG_SE_PATH = "config_se.json"
CHECKPOINT_SE_PATH = "SE_checkpoint.pth.tar"

# Load the Speaker encoder

SE_speaker_manager = SpeakerManager(encoder_model_path=CHECKPOINT_SE_PATH, encoder_config_path=CONFIG_SE_PATH, use_cuda=USE_CUDA)

# Define helper function


def chatgpt(apikey, result):
    
    openai.api_key = apikey

    messages = mes

    # chatgpt
    content = result
    messages.append({"role": "user", "content": content})

    completion = openai.ChatCompletion.create(
      model = "gpt-3.5-turbo",
      messages = messages
    )

    chat_response = completion.choices[0].message.content

    messages.append({"role": "assistant", "content": chat_response}) 

    wavs = synthesizer.tts(chat_response + "。")
    
    synthesizer.save_wav(wavs, "output.wav")

    a1, b1 = read("output.wav")

    audio_out = "audio_out.wav"

    write(audio_out, a1, b1)

    return [chat_response, audio_out]

def compute_spec(ref_file):
  y, sr = librosa.load(ref_file, sr=ap.sample_rate)
  spec = ap.spectrogram(y)
  spec = torch.FloatTensor(spec).unsqueeze(0)
  return spec


def voice_conversion(ta, ra, da):

  target_audio = 'target.wav'
  reference_audio = 'reference.wav'
  driving_audio = 'driving.wav'

  write(target_audio, ta[0], ta[1])
  write(reference_audio, ra[0], ra[1])
  write(driving_audio, da[0], da[1])          

  # !ffmpeg-normalize $target_audio -nt rms -t=-27 -o $target_audio -ar 16000 -f
  # !ffmpeg-normalize $reference_audio -nt rms -t=-27 -o $reference_audio -ar 16000 -f
  # !ffmpeg-normalize $driving_audio -nt rms -t=-27 -o $driving_audio -ar 16000 -f

  files = [target_audio, reference_audio, driving_audio]

  for file in files:
      subprocess.run(["ffmpeg-normalize", file, "-nt", "rms", "-t=-27", "-o", file, "-ar", "16000", "-f"])

  # ta_ = read(target_audio)

  target_emb = SE_speaker_manager.compute_d_vector_from_clip([target_audio])
  target_emb = torch.FloatTensor(target_emb).unsqueeze(0)

  driving_emb = SE_speaker_manager.compute_d_vector_from_clip([reference_audio])
  driving_emb = torch.FloatTensor(driving_emb).unsqueeze(0)

  # Convert the voice

  driving_spec = compute_spec(driving_audio)
  y_lengths = torch.tensor([driving_spec.size(-1)])
  if USE_CUDA:
      ref_wav_voc, _, _ = model.voice_conversion(driving_spec.cuda(), y_lengths.cuda(), driving_emb.cuda(), target_emb.cuda())
      ref_wav_voc = ref_wav_voc.squeeze().cpu().detach().numpy()
  else:
      ref_wav_voc, _, _ = model.voice_conversion(driving_spec, y_lengths, driving_emb, target_emb)
      ref_wav_voc = ref_wav_voc.squeeze().detach().numpy()

  # print("Reference Audio after decoder:")
  # IPython.display.display(Audio(ref_wav_voc, rate=ap.sample_rate))

  return (ap.sample_rate, ref_wav_voc)

    
block = gr.Blocks()

with block:
    with gr.Group():
        gr.Markdown(
            """ # <center>🥳💬💕 - TalktoAI,随时随地,谈天说地!</center>
            
            ## <center>🤖 - 让有人文关怀的AI造福每一个人!AI向善,文明璀璨!TalktoAI - Enable the future!</center>
            
      """
        )
        
        with gr.Box():
            with gr.Row().style(mobile_collapse=False, equal_height=True):

                inp1 = gr.components.Textbox(lines=2, label="请填写您的OpenAI-API-key")
                inp2 = gr.components.Textbox(lines=2, label="说些什么吧")

                btn = gr.Button("开始对话吧")
 
        texts = gr.Textbox(lines=2, label="ChatGPT的回答")
        audio_tts = gr.Audio(label="自动合成的声音")
              
        btn.click(chatgpt, [inp1, inp2], [texts, audio_tts])

        with gr.Box():
            with gr.Row().style(mobile_collapse=False, equal_height=True):
                inp3 = gr.Audio(label = "请上传您喜欢的声音(wav/mp3文件, max. 30mb)")
                inp4 = audio_tts
                inp5 = audio_tts

                btn1 = gr.Button("用喜欢的声音听一听吧")

        out1 = gr.Audio(label="声音拟合的专属声音")

        btn1.click(voice_conversion, [inp3, inp4, inp5], [out1])

        gr.Markdown(
            """ 
            
            ### <center>注意❗:请不要输入或生成会对个人以及组织造成侵害的内容,此程序仅供科研、学习及娱乐使用。用户输入或生成的内容与程序开发者无关,请自觉合法合规使用,违反者一切后果自负。</center>
            
            ### <center>Model by [Raven](https://huggingface.co/spaces/BlinkDL/Raven-RWKV-7B). Thanks to [PENG Bo](https://github.com/BlinkDL). Please follow me on [Bilibili](https://space.bilibili.com/501495851?spm_id_from=333.1007.0.0).</center>
            
      """
        )
        
        gr.HTML('''
        <div class="footer">
                    <p>🎶🖼️🎡 - It’s the intersection of technology and liberal arts that makes our hearts sing. - Steve Jobs
                    </p>
        </div>
        ''')


block.launch(show_error=True)