Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -4,7 +4,7 @@ import random
|
|
4 |
import spaces
|
5 |
import torch
|
6 |
import time
|
7 |
-
from diffusers import DiffusionPipeline
|
8 |
from custom_pipeline import FLUXPipelineWithIntermediateOutputs
|
9 |
|
10 |
# Constants
|
@@ -19,6 +19,7 @@ dtype = torch.float16
|
|
19 |
pipe = FLUXPipelineWithIntermediateOutputs.from_pretrained(
|
20 |
"black-forest-labs/FLUX.1-schnell", torch_dtype=dtype
|
21 |
).to("cuda")
|
|
|
22 |
torch.cuda.empty_cache()
|
23 |
|
24 |
# Inference function
|
@@ -26,7 +27,7 @@ torch.cuda.empty_cache()
|
|
26 |
def generate_image(prompt, seed=42, width=DEFAULT_WIDTH, height=DEFAULT_HEIGHT, randomize_seed=False, num_inference_steps=2, progress=gr.Progress(track_tqdm=True)):
|
27 |
if randomize_seed:
|
28 |
seed = random.randint(0, MAX_SEED)
|
29 |
-
generator = torch.Generator(
|
30 |
|
31 |
start_time = time.time()
|
32 |
|
|
|
4 |
import spaces
|
5 |
import torch
|
6 |
import time
|
7 |
+
from diffusers import DiffusionPipeline, AutoencoderTiny
|
8 |
from custom_pipeline import FLUXPipelineWithIntermediateOutputs
|
9 |
|
10 |
# Constants
|
|
|
19 |
pipe = FLUXPipelineWithIntermediateOutputs.from_pretrained(
|
20 |
"black-forest-labs/FLUX.1-schnell", torch_dtype=dtype
|
21 |
).to("cuda")
|
22 |
+
pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=torch.float16)
|
23 |
torch.cuda.empty_cache()
|
24 |
|
25 |
# Inference function
|
|
|
27 |
def generate_image(prompt, seed=42, width=DEFAULT_WIDTH, height=DEFAULT_HEIGHT, randomize_seed=False, num_inference_steps=2, progress=gr.Progress(track_tqdm=True)):
|
28 |
if randomize_seed:
|
29 |
seed = random.randint(0, MAX_SEED)
|
30 |
+
generator = torch.Generator().manual_seed(int(float(seed)))
|
31 |
|
32 |
start_time = time.time()
|
33 |
|