|
import json |
|
import requests |
|
import gradio as gr |
|
import pandas as pd |
|
import os |
|
import openai |
|
|
|
openai.api_key = os.environ.get('GPT_3_Token') |
|
|
|
def openai_query( |
|
recipient:str = "Employer", |
|
len:int = 400, |
|
recipient_name:str = "John Doe", |
|
context:str = "", |
|
input:str = "", |
|
random_state:float = 0.85 |
|
) -> str: |
|
|
|
return openai.Completion.create( |
|
engine='text-davinci-002', |
|
prompt="Write a professional email to my " + recipient + " starting with Hello " + recipient_name + ", about the subject " + context + " and the email should be based on this draft: " + input, |
|
temperature = random_state, |
|
max_tokens= len, |
|
frequency_penalty=0.25, |
|
presence_penalty=0.75, |
|
best_of=1 |
|
).get("choices")[0]['text'].strip() |
|
|
|
|
|
def query(payload, API_URL): |
|
print() |
|
response = requests.request("POST", API_URL, json=payload) |
|
return response.json() |
|
|
|
|
|
def pre_query(model_id, context, input, dates, sender, recipient, recipient_name): |
|
API_URL = "https://api-inference.huggingface.co/models/" + model_id |
|
|
|
if model_id == "bigscience/T0pp": |
|
input_string = "Write a professional email to my " + recipient + " starting with Hello " + recipient_name + ", about the subject " + context + " and the email should be based on this draft: " + input |
|
data = query(input_string, API_URL) |
|
if type(data) is dict: |
|
return data['error'] |
|
else: |
|
return data[0]['generated_text'] |
|
|
|
if model_id == "bigscience/bloom": |
|
input_string = "Write a professional email to my " + recipient + " starting with Hello " + recipient_name + ", about the subject " + context + " and the email should be based on this draft: " + input + ": Hello " + recipient_name + ",\n\n" |
|
data = query({ |
|
"inputs":input_string, |
|
"parameters":{"max_new_tokens":96, |
|
"return_full_text": False} |
|
}, API_URL) |
|
if type(data) is dict: |
|
return data['error'] |
|
else: |
|
return "Hello " + recipient_name + ",\n\n" + data[0]['generated_text'].replace(input_string,'') |
|
|
|
if model_id == "EleutherAI/gpt-neox-20b": |
|
input_string = "Write a professional email to my " + recipient + " starting with Hello " + recipient_name + ", about the subject " + context + " and the email should be based on this draft: " + input |
|
data = query(input_string, API_URL) |
|
|
|
if type(data) is dict: |
|
return data['error'] |
|
else: |
|
return data[0]['generated_text'] |
|
|
|
if model_id == "GPT-3": |
|
return openai_query(recipient, 250, recipient_name, context, input) |
|
|
|
return |
|
|
|
title = "Email Assistant" |
|
|
|
interface = gr.Interface( |
|
fn = pre_query, |
|
|
|
inputs=[gr.Dropdown(["GPT-3", "bigscience/T0pp", "bigscience/bloom", "EleutherAI/gpt-neox-20b"] ,label = "model_id"), |
|
gr.Dropdown([ "Requesting a meeting", "Conflict with scheduled meeting time", "Requesting clarification", "Requesting to leave early", "Requesting a leave of absence", "Requesting a letter of recommendation", "Requesting a referral for a job application"], label= "Subject/Context"), |
|
gr.Textbox(label="Input", lines=10, placeholder="Enter your Message Here!"), |
|
gr.Textbox(label="Relevant Dates", placeholder ="MM/DD/YYYY"), |
|
gr.Dropdown(["student", "employee", "applicant", "recruiter", "boss"], label="Sender"), |
|
gr.Dropdown(["professor", "supervisor", "coworker", "recruiter", "boss"], label="Recipient"), |
|
gr.Textbox(label="Recipient Name", placeholder = "George")], |
|
|
|
outputs=[gr.Textbox(lines=10, label = "Result")], |
|
|
|
title = title, |
|
).launch(debug=True) |