import json import requests import gradio as gr import pandas as pd import os import openai openai.api_key = os.environ.get('GPT_3_Token') def openai_query( recipient:str = "Employer", len:int = 400, recipient_name:str = "John Doe", context:str = "", input:str = "", random_state:float = 0.85 ) -> str: return openai.Completion.create( engine='text-davinci-002', prompt="Write a professional email to my " + recipient + " starting with Hello " + recipient_name + ", about the subject " + context + " and the email should be based on this draft: " + input, temperature = random_state, max_tokens= len, frequency_penalty=0.25, presence_penalty=0.75, best_of=1 ).get("choices")[0]['text'].strip() def query(payload, API_URL): print() response = requests.request("POST", API_URL, json=payload) return response.json() def pre_query(model_id, context, input, dates, sender, recipient, recipient_name): API_URL = "https://api-inference.huggingface.co/models/" + model_id if model_id == "bigscience/T0pp": input_string = "Write a professional email to my " + recipient + " starting with Hello " + recipient_name + ", about the subject " + context + " and the email should be based on this draft: " + input data = query(input_string, API_URL) if type(data) is dict: return data['error'] else: return data[0]['generated_text'] if model_id == "bigscience/bloom": input_string = "Write a professional email to my " + recipient + " starting with Hello " + recipient_name + ", about the subject " + context + " and the email should be based on this draft: " + input + ": Hello " + recipient_name + ",\n\n" data = query({ "inputs":input_string, "parameters":{"max_new_tokens":96, "return_full_text": False} }, API_URL) if type(data) is dict: return data['error'] else: return "Hello " + recipient_name + ",\n\n" + data[0]['generated_text'].replace(input_string,'') if model_id == "EleutherAI/gpt-neox-20b": input_string = "Write a professional email to my " + recipient + " starting with Hello " + recipient_name + ", about the subject " + context + " and the email should be based on this draft: " + input data = query(input_string, API_URL) if type(data) is dict: return data['error'] else: return data[0]['generated_text'] if model_id == "GPT-3": return openai_query(recipient, 250, recipient_name, context, input) return title = "Email Assistant" interface = gr.Interface( fn = pre_query, inputs=[gr.Dropdown(["GPT-3", "bigscience/T0pp", "bigscience/bloom", "EleutherAI/gpt-neox-20b"] ,label = "model_id"), gr.Dropdown([ "Requesting a meeting", "Conflict with scheduled meeting time", "Requesting clarification", "Requesting to leave early", "Requesting a leave of absence", "Requesting a letter of recommendation", "Requesting a referral for a job application"], label= "Subject/Context"), gr.Textbox(label="Input", lines=10, placeholder="Enter your Message Here!"), gr.Textbox(label="Relevant Dates", placeholder ="MM/DD/YYYY"), gr.Dropdown(["student", "employee", "applicant", "recruiter", "boss"], label="Sender"), gr.Dropdown(["professor", "supervisor", "coworker", "recruiter", "boss"], label="Recipient"), gr.Textbox(label="Recipient Name", placeholder = "George")], outputs=[gr.Textbox(lines=10, label = "Result")], title = title, ).launch(debug=True)