Kr1shi commited on
Commit
12ffa2b
1 Parent(s): c6793c9

starting space

Browse files
Files changed (2) hide show
  1. app.py +54 -0
  2. requirements.txt +4 -0
app.py ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from diffusers import StableDiffusionPipeline
2
+ import torch
3
+ import requests
4
+ from PIL import Image
5
+ from io import BytesIO
6
+ from diffusers import StableDiffusionImg2ImgPipeline
7
+
8
+ device = "cpu"
9
+ model_id = "krishi/tartan2"
10
+ pipe = StableDiffusionPipeline.from_pretrained(model_id).to(device)
11
+
12
+ pipe2 = StableDiffusionImg2ImgPipeline(**pipe.components).to(device)
13
+
14
+ import gradio as gr
15
+
16
+ def generate_txt2img(inp_txt, inp_neg, num_inf_steps, width, height, g_scale, num_imgs):
17
+ return pipe(prompt=inp_txt, negative_prompt=inp_neg, num_inference_steps=num_inf_steps, width=width, height=height, guidance_scale=g_scale, num_images_per_prompt=num_imgs).images
18
+ def generate_img2img(inp_img, inp_txt, inp_neg, num_inf_steps, g_scale, num_imgs, strength):
19
+ image = Image.fromarray(inp_img)
20
+ image = image.resize((512, 512))
21
+ return pipe2(prompt=inp_txt, negative_prompt=inp_neg, num_inference_steps=num_inf_steps, image=image, strength=strength, guidance_scale=g_scale, num_images_per_prompt=num_imgs).images
22
+
23
+ with gr.Blocks() as demo:
24
+ with gr.Tab("Text2Image"):
25
+ with gr.Group():
26
+ inp_txt = gr.Text(show_label=False, placeholder="Enter your prompt here...")
27
+ inp_neg = gr.Text(show_label=False, placeholder="Enter your negative prompt here...")
28
+ with gr.Accordion("Extra parameters", open=False):
29
+ num_inf_steps = gr.Slider(label="Number of inference steps", minimum=20, maximum=100, value=50, step=1)
30
+ with gr.Row():
31
+ with gr.Column():
32
+ width = gr.Slider(label="Width(pixels)", minimum=256, maximum=1024, value=512, step=1)
33
+ with gr.Column():
34
+ height = gr.Slider(label="Height(pixels)", minimum=256, maximum=1024, value=512, step=1)
35
+ g_scale = gr.Slider(label="Guidance scale", minimum=1, maximum=10, value=7.5, step=0.5)
36
+ num_imgs = gr.Slider(label="Number of images", minimum=1, maximum=10, value=1, step=1)
37
+ btn = gr.Button("Generate")
38
+ out_img = gr.Gallery(preview=True)
39
+ btn.click(fn=generate_txt2img, inputs=[inp_txt, inp_neg, num_inf_steps, width, height, g_scale, num_imgs], outputs=[out_img])
40
+ with gr.Tab("Image2Image"):
41
+ with gr.Group():
42
+ inp_img = gr.Image()
43
+ inp_txt2 = gr.Text(show_label=False, placeholder="Enter your prompt here...")
44
+ inp_neg2 = gr.Text(show_label=False, placeholder="Enter your negative prompt here...")
45
+ with gr.Accordion("Extra parameters", open=False):
46
+ num_inf_steps2 = gr.Slider(label="Number of inference steps", minimum=20, maximum=100, value=50, step=1)
47
+ g_scale2 = gr.Slider(label="Guidance scale", minimum=1, maximum=10, value=7.5, step=0.5)
48
+ num_imgs2 = gr.Slider(label="Number of images", minimum=1, maximum=10, value=1, step=1)
49
+ strength = gr.Slider(label="Strength", minimum=0, maximum=1, value=0.8, step=0.1)
50
+ btn2 = gr.Button("Generate")
51
+ out_img2 = gr.Gallery(preview=True)
52
+ btn2.click(fn=generate_img2img, inputs=[inp_img, inp_txt2, inp_neg2, num_inf_steps2, g_scale2, num_imgs2, strength], outputs=[out_img2])
53
+
54
+ demo.launch(debug=True)
requirements.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ torch
2
+ accelerate
3
+ diffusers[torch]
4
+ transformers