Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
CHANGED
@@ -1,57 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import torch
|
4 |
from datasets import load_dataset
|
5 |
|
6 |
-
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
|
7 |
-
|
8 |
|
9 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
10 |
|
11 |
-
#
|
12 |
-
asr_pipe = pipeline("automatic-speech-recognition", model="
|
|
|
|
|
13 |
|
14 |
-
|
15 |
-
|
16 |
|
17 |
-
|
18 |
-
|
19 |
|
20 |
-
|
21 |
-
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
def translate(audio):
|
25 |
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
|
26 |
return outputs["text"]
|
27 |
|
28 |
-
|
29 |
def synthesise(text):
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
|
|
|
|
|
|
|
|
|
34 |
|
35 |
def speech_to_speech_translation(audio):
|
36 |
translated_text = translate(audio)
|
|
|
37 |
synthesised_speech = synthesise(translated_text)
|
38 |
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
|
39 |
-
return 16000, synthesised_speech
|
40 |
-
|
41 |
|
42 |
-
title = "
|
43 |
description = """
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
|
48 |
"""
|
49 |
|
50 |
demo = gr.Blocks()
|
51 |
|
52 |
mic_translate = gr.Interface(
|
53 |
fn=speech_to_speech_translation,
|
54 |
-
inputs=gr.Audio(
|
55 |
outputs=gr.Audio(label="Generated Speech", type="numpy"),
|
56 |
title=title,
|
57 |
description=description,
|
@@ -59,14 +82,14 @@ mic_translate = gr.Interface(
|
|
59 |
|
60 |
file_translate = gr.Interface(
|
61 |
fn=speech_to_speech_translation,
|
62 |
-
inputs=gr.Audio(
|
63 |
outputs=gr.Audio(label="Generated Speech", type="numpy"),
|
64 |
-
examples=[["./example.wav"]],
|
65 |
title=title,
|
66 |
description=description,
|
67 |
)
|
68 |
|
69 |
with demo:
|
70 |
-
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "
|
71 |
|
72 |
demo.launch()
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""ML_task3.ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colaboratory.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1DfK6fjkAd9RjVx3MUGfDtAOulvEenk0E
|
8 |
+
"""
|
9 |
+
|
10 |
+
!pip install gradio
|
11 |
+
|
12 |
+
!pip install datasets
|
13 |
+
!pip install transformers
|
14 |
+
|
15 |
import gradio as gr
|
16 |
import numpy as np
|
17 |
import torch
|
18 |
from datasets import load_dataset
|
19 |
|
20 |
+
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline, WhisperProcessor
|
|
|
21 |
|
22 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
23 |
|
24 |
+
# распознавание речи
|
25 |
+
asr_pipe = pipeline("automatic-speech-recognition", model="voidful/wav2vec2-xlsr-multilingual-56", device=device)
|
26 |
+
|
27 |
+
!pip -q install sentencepiece
|
28 |
|
29 |
+
processor = WhisperProcessor.from_pretrained(
|
30 |
+
"openai/whisper-small")
|
31 |
|
32 |
+
translator_en = pipeline("translation", model="Helsinki-NLP/opus-mt-mul-en")
|
33 |
+
translator_ru = pipeline("translation", model="Helsinki-NLP/opus-mt-en-ru")
|
34 |
|
35 |
+
from transformers import VitsModel, VitsTokenizer
|
|
|
36 |
|
37 |
+
model = VitsModel.from_pretrained("facebook/mms-tts-rus")
|
38 |
+
tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-rus")
|
39 |
+
|
40 |
+
def translator_mul_ru(text):
|
41 |
+
|
42 |
+
translation = translator_ru(translator_en(text)[0]['translation_text'])
|
43 |
+
return translation[0]['translation_text']
|
44 |
|
45 |
def translate(audio):
|
46 |
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
|
47 |
return outputs["text"]
|
48 |
|
|
|
49 |
def synthesise(text):
|
50 |
+
translated_text = translator_mul_ru(text)
|
51 |
+
inputs = tokenizer(translated_text, return_tensors="pt")
|
52 |
+
input_ids = inputs["input_ids"]
|
53 |
|
54 |
+
with torch.no_grad():
|
55 |
+
outputs = model(input_ids)
|
56 |
+
speech = outputs["waveform"]
|
57 |
+
return speech.cpu()
|
58 |
|
59 |
def speech_to_speech_translation(audio):
|
60 |
translated_text = translate(audio)
|
61 |
+
print(translated_text)
|
62 |
synthesised_speech = synthesise(translated_text)
|
63 |
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
|
64 |
+
return 16000, synthesised_speech[0]
|
|
|
65 |
|
66 |
+
title = "Speech-to-Speech Translation"
|
67 |
description = """
|
68 |
+
* Выбранная ASR модель - https://huggingface.co/voidful/wav2vec2-xlsr-multilingual-56
|
69 |
+
* Перевод текста на русский с помощью модели https://huggingface.co/Helsinki-NLP/opus-mt-mul-en
|
70 |
+
* Синтез речи на русском языке с помощью модели https://huggingface.co/facebook/mms-tts-rus
|
|
|
71 |
"""
|
72 |
|
73 |
demo = gr.Blocks()
|
74 |
|
75 |
mic_translate = gr.Interface(
|
76 |
fn=speech_to_speech_translation,
|
77 |
+
inputs=gr.Audio(sources="microphone", type="filepath"),
|
78 |
outputs=gr.Audio(label="Generated Speech", type="numpy"),
|
79 |
title=title,
|
80 |
description=description,
|
|
|
82 |
|
83 |
file_translate = gr.Interface(
|
84 |
fn=speech_to_speech_translation,
|
85 |
+
inputs=gr.Audio(sources="upload", type="filepath"),
|
86 |
outputs=gr.Audio(label="Generated Speech", type="numpy"),
|
|
|
87 |
title=title,
|
88 |
description=description,
|
89 |
)
|
90 |
|
91 |
with demo:
|
92 |
+
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "File"])
|
93 |
|
94 |
demo.launch()
|
95 |
+
|