Spaces:
Runtime error
Runtime error
Kvikontent
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,27 +1,62 @@
|
|
|
|
1 |
import requests
|
2 |
-
import base64
|
3 |
import io
|
4 |
-
from PIL import Image
|
5 |
-
import gradio as gr
|
6 |
import os
|
|
|
7 |
|
8 |
-
API_KEY = os.environ["API_KEY"] # replace with your own API Token here
|
9 |
API_URL = "https://api-inference.huggingface.co/models/Kvikontent/kviimager2.0"
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
try:
|
16 |
-
response = requests.request("POST", url=API_URL, data=payload, headers=HEADERS)
|
17 |
-
|
18 |
-
if not (response is None or response.status_code != 200):
|
19 |
-
result = response.text[7:-5]
|
20 |
-
|
21 |
-
return Image.open(io.BytesIO(base64.b64decode(result)))
|
22 |
-
|
23 |
-
except Exception as e:
|
24 |
-
print('Error processing request')
|
25 |
-
raise ValueError(e)
|
26 |
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
import requests
|
|
|
3 |
import io
|
|
|
|
|
4 |
import os
|
5 |
+
from PIL import Image
|
6 |
|
|
|
7 |
API_URL = "https://api-inference.huggingface.co/models/Kvikontent/kviimager2.0"
|
8 |
+
api_key = os.environ.get('API_KEY')
|
9 |
+
headers = {"Authorization": f"Bearer {api_key}"}
|
10 |
+
|
11 |
+
def query(payload):
|
12 |
+
response = requests.post(API_URL, headers=headers, json=payload)
|
13 |
+
return response.content
|
14 |
+
|
15 |
+
def generate_image_from_prompt(prompt_text):
|
16 |
+
image_bytes = query({"inputs": prompt_text})
|
17 |
+
generated_image = Image.open(io.BytesIO(image_bytes))
|
18 |
+
return generated_image
|
19 |
+
|
20 |
+
title = "KVIImager 2.0 Demo 🎨"
|
21 |
+
description = "This app uses Hugging Face AI model to generate an image based on the provided text prompt 🖼️."
|
22 |
+
examples = [
|
23 |
+
["A peaceful garden with a small cottage 🏡"],
|
24 |
+
["A colorful abstract painting with geometric shapes 🎨"],
|
25 |
+
["A serene beach at sunset 🌅"]
|
26 |
+
]
|
27 |
+
|
28 |
+
css_styles = {
|
29 |
+
'body': {
|
30 |
+
'background-color': '#f4f4f4',
|
31 |
+
'font-family': 'Arial, sans-serif'
|
32 |
+
},
|
33 |
+
'title': {
|
34 |
+
'color': 'navy',
|
35 |
+
'font-size': '36px',
|
36 |
+
'text-align': 'center',
|
37 |
+
'margin-bottom': '20px'
|
38 |
+
},
|
39 |
+
'textbox': {
|
40 |
+
'border': '2px solid #008CBA',
|
41 |
+
'border-radius': '5px',
|
42 |
+
'padding': '10px',
|
43 |
+
'margin-bottom': '20px',
|
44 |
+
'width': '300px',
|
45 |
+
'font-size': '16px'
|
46 |
+
},
|
47 |
+
'output_image': {
|
48 |
+
'box-shadow': '2px 2px 5px #888888'
|
49 |
+
}
|
50 |
+
}
|
51 |
|
52 |
+
input_prompt = gr.Textbox(label="Enter Prompt 📝", placeholder="E.g. 'A peaceful garden with a small cottage'")
|
53 |
+
output_generated_image = gr.Image(label="Generated Image")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
+
gr.Interface(
|
56 |
+
generate_image_from_prompt,
|
57 |
+
inputs=input_prompt,
|
58 |
+
outputs=output_generated_image,
|
59 |
+
title=title,
|
60 |
+
description=description,
|
61 |
+
examples=examples
|
62 |
+
).launch(inline=True, css=css_styles)
|