KvrParaskevi
commited on
Upload 2 files
Browse files- chatbot-model-huggingface.py +52 -0
- chatbot_bedrock.py +44 -0
chatbot-model-huggingface.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import chatbot_bedrock as demo_chat
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
+
|
5 |
+
st.title("Hi, I am Chatbot Philio :mermaid:")
|
6 |
+
st.write("I am your hotel booking assistant for today.")
|
7 |
+
|
8 |
+
hugging_face_key = st.sidebar.text_input('Enter Hugging Face Key to start the chat: ', type='password')
|
9 |
+
|
10 |
+
# tokenizer = AutoTokenizer.from_pretrained("KvrParaskevi/Hotel-Assistant-Attempt4-Llama-2-7b")
|
11 |
+
|
12 |
+
# [theme]
|
13 |
+
# base="light"
|
14 |
+
# primaryColor="#6b4bff"
|
15 |
+
if(hugging_face_key != ""):
|
16 |
+
model_Loading = True
|
17 |
+
if model_Loading == True:
|
18 |
+
model = demo_chat.get_Model(hugging_face_key=hugging_face_key)
|
19 |
+
model_Loading = False
|
20 |
+
|
21 |
+
#Application
|
22 |
+
with st.container():
|
23 |
+
st.markdown('<div class="scrollable-div">', unsafe_allow_html=True)
|
24 |
+
#Langchain memory in session cache
|
25 |
+
if 'memory' not in st.session_state:
|
26 |
+
st.write("Memory is initilizing ...")
|
27 |
+
st.session_state.memory = demo_chat.demo_miny_memory(model)
|
28 |
+
|
29 |
+
#Check if chat history exists in this session
|
30 |
+
if 'chat_history' not in st.session_state:
|
31 |
+
st.session_state.chat_history = [ ] #Initialize chat history
|
32 |
+
|
33 |
+
#renders chat history
|
34 |
+
for message in st.session_state.chat_history:
|
35 |
+
with st.chat_message(message["role"]):
|
36 |
+
st.write(message["content"])
|
37 |
+
|
38 |
+
#Set up input text field
|
39 |
+
input_text = st.chat_input(placeholder="Here you can chat with Llamma 2 model.")
|
40 |
+
|
41 |
+
if input_text:
|
42 |
+
with st.chat_message("user"):
|
43 |
+
st.write(input_text)
|
44 |
+
st.session_state.chat_history.append({"role" : "user", "content" : input_text}) #append message to chat history
|
45 |
+
|
46 |
+
chat_response = demo_chat.demo_chain(input_text=input_text, memory=st.session_state.memory, model= model)
|
47 |
+
first_answer = chat_response.split("Human")[0] #Because of Predict it prints the whole conversation.Here we seperate the first answer only.
|
48 |
+
|
49 |
+
with st.chat_message("assistant"):
|
50 |
+
st.write(first_answer)
|
51 |
+
st.session_state.chat_history.append({"role": "assistant", "content": first_answer})
|
52 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
chatbot_bedrock.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from langchain import PromptTemplate, HuggingFaceHub, LLMChain
|
3 |
+
from langchain.memory import ConversationBufferMemory
|
4 |
+
from langchain.chains import ConversationChain
|
5 |
+
import langchain.globals
|
6 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
7 |
+
|
8 |
+
def get_Model(hugging_face_key):
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained("KvrParaskevi/Hotel-Assistant-Attempt4-Llama-2-7b",use_auth_token=hugging_face_key)
|
10 |
+
model = AutoModelForCausalLM.from_pretrained("KvrParaskevi/Hotel-Assistant-Attempt4-Llama-2-7b",use_auth_token=hugging_face_key).eval()
|
11 |
+
return model
|
12 |
+
|
13 |
+
|
14 |
+
#Write function to connect to Bedrock
|
15 |
+
# def demo_chatbot():
|
16 |
+
# # client = boto3.client('bedrock-runtime')
|
17 |
+
|
18 |
+
# template = """Question: {question}
|
19 |
+
|
20 |
+
# Answer: Let's think step by step."""
|
21 |
+
# prompt = PromptTemplate(template=template, input_variables=["question"])
|
22 |
+
# llm=HuggingFaceHub(repo_id="google/flan-t5-xl", model_kwargs={"temperature":1e-10})
|
23 |
+
|
24 |
+
# question = "When was Google founded?"
|
25 |
+
|
26 |
+
# print(llm_chain.run(question))
|
27 |
+
# return demo_llm
|
28 |
+
|
29 |
+
#test out the code with the Predicgt method
|
30 |
+
#return demo_llm.predict(input)
|
31 |
+
# = demo_chatbot('What is the temperature in Nuremberg today?')
|
32 |
+
#print(response)
|
33 |
+
|
34 |
+
def demo_miny_memory(model):
|
35 |
+
# llm_data = get_Model(hugging_face_key)
|
36 |
+
memory = ConversationBufferMemory(llm = model,max_token_limit = 512)
|
37 |
+
return memory
|
38 |
+
|
39 |
+
def demo_chain(input_text, memory,model):
|
40 |
+
# llm_data = get_Model(hugging_face_key)
|
41 |
+
llm_conversation = ConversationChain(llm=model,memory=memory,verbose=langchain.globals.get_verbose())
|
42 |
+
|
43 |
+
chat_reply = llm_conversation.predict(input=input_text)
|
44 |
+
return chat_reply
|