Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,410 Bytes
a69d738 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 |
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import gc
import sys
from diffusers import FluxPipeline
import time
from sentence_transformers import SentenceTransformer
import psutil
import json
import spaces
from threading import Thread
#-----------------
from relatively_constant_variables import knowledge_base
# Initialize the zero tensor on CUDA
zero = torch.Tensor([0]).cuda()
print(zero.device) # This will print 'cpu' outside the @spaces.GPU decorated function
modelnames = ["stvlynn/Gemma-2-2b-Chinese-it", "nbeerbower/mistral-nemo-wissenschaft-12B", "princeton-nlp/gemma-2-9b-it-SimPO", "cognitivecomputations/dolphin-2.9.3-mistral-7B-32k", "01-ai/Yi-Coder-9B-Chat", "ArliAI/Llama-3.1-8B-ArliAI-RPMax-v1.1", "ArliAI/Phi-3.5-mini-3.8B-ArliAI-RPMax-v1.1",
"Qwen/Qwen2.5-7B-Instruct", "Qwen/Qwen2-0.5B-Instruct", "Qwen/Qwen2-1.5B-Instruct", "Qwen/Qwen2-7B-Instruct", "Qwen/Qwen1.5-MoE-A2.7B-Chat", "HuggingFaceTB/SmolLM-135M-Instruct", "microsoft/Phi-3-mini-4k-instruct", "Groq/Llama-3-Groq-8B-Tool-Use", "hugging-quants/Meta-Llama-3.1-8B-Instruct-BNB-NF4",
"SpectraSuite/TriLM_3.9B_Unpacked", "h2oai/h2o-danube3-500m-chat", "OuteAI/Lite-Mistral-150M-v2-Instruct", "Zyphra/Zamba2-1.2B", "anthracite-org/magnum-v2-4b", ]
imagemodelnames = ["black-forest-labs/FLUX.1-schnell"]
current_model_index = 0
current_image_model_index = 0
modelname = modelnames[current_model_index]
imagemodelname = imagemodelnames[current_image_model_index]
lastmodelnameinloadfunction = None
lastimagemodelnameinloadfunction = None
# Load the embedding model
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
# Initialize model and tokenizer as global variables
model = None
tokenizer = None
flux_pipe = None
# Dictionary to store loaded models
loaded_models = {}
def get_size_str(bytes):
for unit in ['B', 'KB', 'MB', 'GB', 'TB']:
if bytes < 1024:
return f"{bytes:.2f} {unit}"
bytes /= 1024
def load_model(model_name):
global model, tokenizer, lastmodelnameinloadfunction, loaded_models
print(f"Loading model and tokenizer: {model_name}")
# Record initial GPU memory usage
initial_memory = torch.cuda.memory_allocated()
# Clear old model and tokenizer if they exist
if 'model' in globals() and model is not None:
model = None
if 'tokenizer' in globals() and tokenizer is not None:
tokenizer = None
torch.cuda.empty_cache()
gc.collect()
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
model_size = sum(p.numel() * p.element_size() for p in model.parameters())
tokenizer_size = sum(sys.getsizeof(v) for v in tokenizer.__dict__.values())
loaded_models[model_name] = (model, tokenizer)
# Calculate memory usage
final_memory = torch.cuda.memory_allocated()
memory_used = final_memory - initial_memory
loaded_models[model_name] = [str(time.time()), memory_used]
lastmodelnameinloadfunction = (model_name, model_size, tokenizer_size)
print(f"Model and tokenizer {model_name} loaded successfully")
print(f"Model size: {get_size_str(model_size)}")
print(f"Tokenizer size: {get_size_str(tokenizer_size)}")
print(f"GPU memory used: {get_size_str(memory_used)}")
return (f"Model and tokenizer {model_name} loaded successfully. "
f"Model size: {get_size_str(model_size)}, "
f"Tokenizer size: {get_size_str(tokenizer_size)}, "
f"GPU memory used: {get_size_str(memory_used)}")
def load_image_model(imagemodelname):
global flux_pipe, lastimagemodelnameinloadfunction, loaded_models
print(f"Loading image model: {imagemodelname}")
# Record initial GPU memory usage
initial_memory = torch.cuda.memory_allocated()
if 'flux_pipe' in globals() and flux_pipe is not None:
flux_pipe = None
torch.cuda.empty_cache()
gc.collect()
flux_pipe = FluxPipeline.from_pretrained(imagemodelname, torch_dtype=torch.bfloat16)
flux_pipe.enable_model_cpu_offload()
model_size = sum(p.numel() * p.element_size() for p in flux_pipe.transformer.parameters())
#tokenizer_size = 0 # FLUX doesn't use a separate tokenizer
loaded_models[imagemodelname] = flux_pipe
# Calculate memory usage
final_memory = torch.cuda.memory_allocated()
memory_used = final_memory - initial_memory
loaded_models[imagemodelname] = [str(time.time()), memory_used]
lastimagemodelnameinloadfunction = (imagemodelname, model_size) #, tokenizer_size)
print(f"Model and tokenizer {imagemodelname} loaded successfully")
print(f"Model size: {get_size_str(model_size)}")
#print(f"Tokenizer size: {get_size_str(tokenizer_size)}")
print(f"GPU memory used: {get_size_str(memory_used)}")
return (f"Model and tokenizer {imagemodelname} loaded successfully. "
f"Model size: {get_size_str(model_size)}, "
#f"Tokenizer size: {get_size_str(tokenizer_size)}, "
f"GPU memory used: {get_size_str(memory_used)}")
def clear_all_models():
global model, tokenizer, flux_pipe, loaded_models
for model_name, model_obj in loaded_models.items():
if isinstance(model_obj, tuple):
model_obj[0].to('cpu')
del model_obj[0]
del model_obj[1]
else:
model_obj.to('cpu')
del model_obj
model = None
tokenizer = None
flux_pipe = None
loaded_models.clear()
torch.cuda.empty_cache()
gc.collect()
return "All models cleared from memory."
def load_model_list(model_list):
messages = []
for model_name in model_list:
message = load_model(model_name)
messages.append(message)
return "\n".join(messages)
def loaded_model_list():
global loaded_models
return loaded_models
# Initial model load
load_model(modelname)
load_image_model(imagemodelname)
# Create embeddings for the knowledge base
knowledge_base_embeddings = embedding_model.encode([doc["content"] for doc in knowledge_base])
def retrieve(query, k=2):
query_embedding = embedding_model.encode([query])
similarities = torch.nn.functional.cosine_similarity(torch.tensor(query_embedding), torch.tensor(knowledge_base_embeddings))
top_k_indices = similarities.argsort(descending=True)[:k]
return [(knowledge_base[i]["content"], knowledge_base[i]["id"]) for i in top_k_indices]
def get_ram_usage():
ram = psutil.virtual_memory()
return f"RAM Usage: {ram.percent:.2f}%, Available: {ram.available / (1024 ** 3):.2f}GB, Total: {ram.total / (1024 ** 3):.2f}GB"
# Global dictionary to store outputs
output_dict = {}
def empty_output_dict():
global output_dict
output_dict = {}
print("Output dictionary has been emptied.")
def get_model_details(model):
return {
"name": model.config.name_or_path,
"architecture": model.config.architectures[0] if model.config.architectures else "Unknown",
"num_parameters": sum(p.numel() for p in model.parameters()),
}
def get_tokenizer_details(tokenizer):
return {
"name": tokenizer.__class__.__name__,
"vocab_size": tokenizer.vocab_size,
"model_max_length": tokenizer.model_max_length,
}
@spaces.GPU
def generate_response(prompt, use_rag, stream=False):
global output_dict, model, tokenizer
print(zero.device) # This will print 'cuda:0' inside the @spaces.GPU decorated function
torch.cuda.empty_cache()
print(dir(model))
if use_rag:
retrieved_docs = retrieve(prompt)
context = " ".join([doc for doc, _ in retrieved_docs])
doc_ids = [doc_id for _, doc_id in retrieved_docs]
full_prompt = f"Context: {context}\nQuestion: {prompt}\nAnswer:"
else:
full_prompt = prompt
doc_ids = None
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": full_prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(zero.device)
start_time = time.time()
total_tokens = 0
print(output_dict)
output_key = f"output_{len(output_dict) + 1}"
print(output_key)
output_dict[output_key] = {
"input_prompt": prompt,
"full_prompt": full_prompt,
"use_rag": use_rag,
"generated_text": "",
"tokens_per_second": 0,
"ram_usage": "",
"doc_ids": doc_ids if doc_ids else "N/A",
"model_details": get_model_details(model),
"tokenizer_details": get_tokenizer_details(tokenizer),
"timestamp": time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(start_time))
}
print(output_dict)
if stream:
streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True)
generation_kwargs = dict(
model_inputs,
streamer=streamer,
max_new_tokens=512,
temperature=0.7,
)
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
for new_text in streamer:
output_dict[output_key]["generated_text"] += new_text
total_tokens += 1
current_time = time.time()
tokens_per_second = total_tokens / (current_time - start_time)
ram_usage = get_ram_usage()
output_dict[output_key]["tokens_per_second"] = f"{tokens_per_second:.2f}"
output_dict[output_key]["ram_usage"] = ram_usage
yield (output_dict[output_key]["generated_text"],
output_dict[output_key]["tokens_per_second"],
output_dict[output_key]["ram_usage"],
output_dict[output_key]["doc_ids"])
else:
generated_ids = model.generate(
model_inputs.input_ids,
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
total_tokens = len(generated_ids[0])
end_time = time.time()
tokens_per_second = total_tokens / (end_time - start_time)
ram_usage = get_ram_usage()
output_dict[output_key]["generated_text"] = response
output_dict[output_key]["tokens_per_second"] = f"{tokens_per_second:.2f}"
output_dict[output_key]["ram_usage"] = ram_usage
print(output_dict)
yield (output_dict[output_key]["generated_text"],
output_dict[output_key]["tokens_per_second"],
output_dict[output_key]["ram_usage"],
output_dict[output_key]["doc_ids"])
@spaces.GPU
def generate_image(prompt):
global output_dict, flux_pipe
print(dir(flux_pipe))
# Generate image using FLUX
image = flux_pipe(
prompt,
guidance_scale=0.0,
num_inference_steps=4,
max_sequence_length=256,
generator=torch.Generator("cpu").manual_seed(0)
).images[0]
image_path = f"flux_output_{time.time()}.png"
print(image_path)
image.save(image_path)
ram_usage = get_ram_usage()
return image_path, ram_usage, image_path
def get_output_details(output_key):
if output_key in output_dict:
return output_dict[output_key]
else:
return f"No output found for key: {output_key}"
# Update the switch_model function to return the load_model message
def switch_model(choice):
global modelname
modelname = choice
load_message = load_model(modelname)
return load_message, f"Current model: {modelname}"
# Update the model_change_handler function
def model_change_handler(choice):
message, current_model = switch_model(choice)
return message, current_model, message # Use the same message for both outputs
def format_output_dict():
global output_dict
formatted_output = ""
for key, value in output_dict.items():
formatted_output += f"Key: {key}\n"
formatted_output += json.dumps(value, indent=2)
formatted_output += "\n\n"
print(formatted_output)
return formatted_output |