File size: 12,410 Bytes
a69d738
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import gc
import sys
from diffusers import FluxPipeline
import time
from sentence_transformers import SentenceTransformer
import psutil
import json
import spaces
from threading import Thread
#-----------------
from relatively_constant_variables import knowledge_base

# Initialize the zero tensor on CUDA
zero = torch.Tensor([0]).cuda()
print(zero.device)  # This will print 'cpu' outside the @spaces.GPU decorated function

modelnames = ["stvlynn/Gemma-2-2b-Chinese-it", "nbeerbower/mistral-nemo-wissenschaft-12B", "princeton-nlp/gemma-2-9b-it-SimPO", "cognitivecomputations/dolphin-2.9.3-mistral-7B-32k", "01-ai/Yi-Coder-9B-Chat", "ArliAI/Llama-3.1-8B-ArliAI-RPMax-v1.1", "ArliAI/Phi-3.5-mini-3.8B-ArliAI-RPMax-v1.1", 
              "Qwen/Qwen2.5-7B-Instruct", "Qwen/Qwen2-0.5B-Instruct", "Qwen/Qwen2-1.5B-Instruct", "Qwen/Qwen2-7B-Instruct", "Qwen/Qwen1.5-MoE-A2.7B-Chat", "HuggingFaceTB/SmolLM-135M-Instruct", "microsoft/Phi-3-mini-4k-instruct", "Groq/Llama-3-Groq-8B-Tool-Use", "hugging-quants/Meta-Llama-3.1-8B-Instruct-BNB-NF4", 
              "SpectraSuite/TriLM_3.9B_Unpacked", "h2oai/h2o-danube3-500m-chat", "OuteAI/Lite-Mistral-150M-v2-Instruct", "Zyphra/Zamba2-1.2B", "anthracite-org/magnum-v2-4b", ]

imagemodelnames = ["black-forest-labs/FLUX.1-schnell"]

current_model_index = 0
current_image_model_index = 0
modelname = modelnames[current_model_index]
imagemodelname = imagemodelnames[current_image_model_index]
lastmodelnameinloadfunction = None
lastimagemodelnameinloadfunction = None

# Load the embedding model
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')

# Initialize model and tokenizer as global variables
model = None
tokenizer = None
flux_pipe = None

# Dictionary to store loaded models
loaded_models = {}

def get_size_str(bytes):
    for unit in ['B', 'KB', 'MB', 'GB', 'TB']:
        if bytes < 1024:
            return f"{bytes:.2f} {unit}"
        bytes /= 1024

def load_model(model_name):
    global model, tokenizer, lastmodelnameinloadfunction, loaded_models

    print(f"Loading model and tokenizer: {model_name}")
    
    # Record initial GPU memory usage
    initial_memory = torch.cuda.memory_allocated()

    # Clear old model and tokenizer if they exist
    if 'model' in globals() and model is not None:
        model = None
    if 'tokenizer' in globals() and tokenizer is not None:
        tokenizer = None
    
    torch.cuda.empty_cache()
    gc.collect()

    model = AutoModelForCausalLM.from_pretrained(
        model_name,
        torch_dtype="auto",
        device_map="auto"
    )
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model_size = sum(p.numel() * p.element_size() for p in model.parameters())
    tokenizer_size = sum(sys.getsizeof(v) for v in tokenizer.__dict__.values())
    loaded_models[model_name] = (model, tokenizer)

    # Calculate memory usage
    final_memory = torch.cuda.memory_allocated()
    memory_used = final_memory - initial_memory

    loaded_models[model_name] = [str(time.time()), memory_used]

    lastmodelnameinloadfunction = (model_name, model_size, tokenizer_size)
    print(f"Model and tokenizer {model_name} loaded successfully")
    print(f"Model size: {get_size_str(model_size)}")
    print(f"Tokenizer size: {get_size_str(tokenizer_size)}")
    print(f"GPU memory used: {get_size_str(memory_used)}")

    return (f"Model and tokenizer {model_name} loaded successfully. "
            f"Model size: {get_size_str(model_size)}, "
            f"Tokenizer size: {get_size_str(tokenizer_size)}, "
            f"GPU memory used: {get_size_str(memory_used)}")

def load_image_model(imagemodelname):
    global flux_pipe, lastimagemodelnameinloadfunction, loaded_models

    print(f"Loading image model: {imagemodelname}")
    
    # Record initial GPU memory usage
    initial_memory = torch.cuda.memory_allocated()

    if 'flux_pipe' in globals() and flux_pipe is not None:
        flux_pipe = None
    
    torch.cuda.empty_cache()
    gc.collect()

    flux_pipe = FluxPipeline.from_pretrained(imagemodelname, torch_dtype=torch.bfloat16)
    flux_pipe.enable_model_cpu_offload()
    model_size = sum(p.numel() * p.element_size() for p in flux_pipe.transformer.parameters())
    #tokenizer_size = 0  # FLUX doesn't use a separate tokenizer
    loaded_models[imagemodelname] = flux_pipe

    # Calculate memory usage
    final_memory = torch.cuda.memory_allocated()
    memory_used = final_memory - initial_memory

    loaded_models[imagemodelname] = [str(time.time()), memory_used]

    lastimagemodelnameinloadfunction = (imagemodelname, model_size) #, tokenizer_size)
    print(f"Model and tokenizer {imagemodelname} loaded successfully")
    print(f"Model size: {get_size_str(model_size)}")
    #print(f"Tokenizer size: {get_size_str(tokenizer_size)}")
    print(f"GPU memory used: {get_size_str(memory_used)}")

    return (f"Model and tokenizer {imagemodelname} loaded successfully. "
            f"Model size: {get_size_str(model_size)}, "
            #f"Tokenizer size: {get_size_str(tokenizer_size)}, "
            f"GPU memory used: {get_size_str(memory_used)}")


def clear_all_models():
    global model, tokenizer, flux_pipe, loaded_models
    for model_name, model_obj in loaded_models.items():
        if isinstance(model_obj, tuple):
            model_obj[0].to('cpu')
            del model_obj[0]
            del model_obj[1]
        else:
            model_obj.to('cpu')
            del model_obj
    model = None
    tokenizer = None
    flux_pipe = None
    loaded_models.clear()
    torch.cuda.empty_cache()
    gc.collect()
    return "All models cleared from memory."

def load_model_list(model_list):
    messages = []
    for model_name in model_list:
        message = load_model(model_name)
        messages.append(message)
    return "\n".join(messages)

def loaded_model_list():
    global loaded_models
    return loaded_models


# Initial model load
load_model(modelname)
load_image_model(imagemodelname)

# Create embeddings for the knowledge base
knowledge_base_embeddings = embedding_model.encode([doc["content"] for doc in knowledge_base])

def retrieve(query, k=2):
    query_embedding = embedding_model.encode([query])
    similarities = torch.nn.functional.cosine_similarity(torch.tensor(query_embedding), torch.tensor(knowledge_base_embeddings))
    top_k_indices = similarities.argsort(descending=True)[:k]
    return [(knowledge_base[i]["content"], knowledge_base[i]["id"]) for i in top_k_indices]

def get_ram_usage():
    ram = psutil.virtual_memory()
    return f"RAM Usage: {ram.percent:.2f}%, Available: {ram.available / (1024 ** 3):.2f}GB, Total: {ram.total / (1024 ** 3):.2f}GB"

# Global dictionary to store outputs
output_dict = {}

def empty_output_dict():
    global output_dict
    output_dict = {}
    print("Output dictionary has been emptied.")

def get_model_details(model):
    return {
        "name": model.config.name_or_path,
        "architecture": model.config.architectures[0] if model.config.architectures else "Unknown",
        "num_parameters": sum(p.numel() for p in model.parameters()),
    }

def get_tokenizer_details(tokenizer):
    return {
        "name": tokenizer.__class__.__name__,
        "vocab_size": tokenizer.vocab_size,
        "model_max_length": tokenizer.model_max_length,
    }

@spaces.GPU
def generate_response(prompt, use_rag, stream=False):
    global output_dict, model, tokenizer
    
    print(zero.device)  # This will print 'cuda:0' inside the @spaces.GPU decorated function
    torch.cuda.empty_cache()
    print(dir(model))

    if use_rag:
        retrieved_docs = retrieve(prompt)
        context = " ".join([doc for doc, _ in retrieved_docs])
        doc_ids = [doc_id for _, doc_id in retrieved_docs]
        full_prompt = f"Context: {context}\nQuestion: {prompt}\nAnswer:"
    else:
        full_prompt = prompt
        doc_ids = None
    messages = [
        {"role": "system", "content": "You are a helpful assistant."},
        {"role": "user", "content": full_prompt}
    ]
    text = tokenizer.apply_chat_template(
        messages,
        tokenize=False,
        add_generation_prompt=True
    )
    model_inputs = tokenizer([text], return_tensors="pt").to(zero.device)
    start_time = time.time()
    total_tokens = 0
    
    print(output_dict)
    output_key = f"output_{len(output_dict) + 1}"
    print(output_key)
    output_dict[output_key] = {
        "input_prompt": prompt,
        "full_prompt": full_prompt,
        "use_rag": use_rag,
        "generated_text": "",
        "tokens_per_second": 0,
        "ram_usage": "",
        "doc_ids": doc_ids if doc_ids else "N/A",
        "model_details": get_model_details(model),
        "tokenizer_details": get_tokenizer_details(tokenizer),
        "timestamp": time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(start_time))
    }
    print(output_dict)

    if stream:
        streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True)
        generation_kwargs = dict(
            model_inputs,
            streamer=streamer,
            max_new_tokens=512,
            temperature=0.7,
        )
        thread = Thread(target=model.generate, kwargs=generation_kwargs)
        thread.start()
        for new_text in streamer:
            output_dict[output_key]["generated_text"] += new_text
            total_tokens += 1
            current_time = time.time()
            tokens_per_second = total_tokens / (current_time - start_time)
            ram_usage = get_ram_usage()
            output_dict[output_key]["tokens_per_second"] = f"{tokens_per_second:.2f}"
            output_dict[output_key]["ram_usage"] = ram_usage
            yield (output_dict[output_key]["generated_text"], 
                output_dict[output_key]["tokens_per_second"], 
                output_dict[output_key]["ram_usage"], 
                output_dict[output_key]["doc_ids"])
    else:
        generated_ids = model.generate(
            model_inputs.input_ids,
            max_new_tokens=512
        )
        generated_ids = [
            output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
        ]
        response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
        total_tokens = len(generated_ids[0])
        end_time = time.time()
        tokens_per_second = total_tokens / (end_time - start_time)
        ram_usage = get_ram_usage()
        
        output_dict[output_key]["generated_text"] = response
        output_dict[output_key]["tokens_per_second"] = f"{tokens_per_second:.2f}"
        output_dict[output_key]["ram_usage"] = ram_usage
        print(output_dict)

        yield (output_dict[output_key]["generated_text"], 
            output_dict[output_key]["tokens_per_second"], 
            output_dict[output_key]["ram_usage"], 
            output_dict[output_key]["doc_ids"])
            
@spaces.GPU
def generate_image(prompt):
    global output_dict, flux_pipe
    
    print(dir(flux_pipe))

    # Generate image using FLUX
    image = flux_pipe(
        prompt,
        guidance_scale=0.0,
        num_inference_steps=4,
        max_sequence_length=256,
        generator=torch.Generator("cpu").manual_seed(0)
    ).images[0]
    image_path = f"flux_output_{time.time()}.png"
    print(image_path)
    image.save(image_path)
    ram_usage = get_ram_usage()
    return image_path, ram_usage, image_path

def get_output_details(output_key):
    if output_key in output_dict:
        return output_dict[output_key]
    else:
        return f"No output found for key: {output_key}"

# Update the switch_model function to return the load_model message
def switch_model(choice):
    global modelname
    modelname = choice
    load_message = load_model(modelname)
    return load_message, f"Current model: {modelname}"

# Update the model_change_handler function
def model_change_handler(choice):
    message, current_model = switch_model(choice)
    return message, current_model, message  # Use the same message for both outputs

def format_output_dict():
    global output_dict
    formatted_output = ""
    for key, value in output_dict.items():
        formatted_output += f"Key: {key}\n"
        formatted_output += json.dumps(value, indent=2)
        formatted_output += "\n\n"
    print(formatted_output)
    return formatted_output