Spaces:
Sleeping
Sleeping
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
import gc | |
import sys | |
from diffusers import FluxPipeline | |
import time | |
from sentence_transformers import SentenceTransformer | |
import psutil | |
import json | |
import spaces | |
from threading import Thread | |
#----------------- | |
from relatively_constant_variables import knowledge_base | |
# Initialize the zero tensor on CUDA | |
zero = torch.Tensor([0]).cuda() | |
print(zero.device) # This will print 'cpu' outside the @spaces.GPU decorated function | |
modelnames = ["stvlynn/Gemma-2-2b-Chinese-it", "unsloth/Llama-3.2-1B-Instruct", "unsloth/Llama-3.2-3B-Instruct", "nbeerbower/mistral-nemo-wissenschaft-12B", "princeton-nlp/gemma-2-9b-it-SimPO", "cognitivecomputations/dolphin-2.9.3-mistral-7B-32k", "01-ai/Yi-Coder-9B-Chat", "ArliAI/Llama-3.1-8B-ArliAI-RPMax-v1.1", "ArliAI/Phi-3.5-mini-3.8B-ArliAI-RPMax-v1.1", | |
"Qwen/Qwen2.5-7B-Instruct", "Qwen/Qwen2-0.5B-Instruct", "Qwen/Qwen2-1.5B-Instruct", "Qwen/Qwen2-7B-Instruct", "Qwen/Qwen1.5-MoE-A2.7B-Chat", "HuggingFaceTB/SmolLM-135M-Instruct", "microsoft/Phi-3-mini-4k-instruct", "Groq/Llama-3-Groq-8B-Tool-Use", "hugging-quants/Meta-Llama-3.1-8B-Instruct-BNB-NF4", | |
"SpectraSuite/TriLM_3.9B_Unpacked", "h2oai/h2o-danube3-500m-chat", "OuteAI/Lite-Mistral-150M-v2-Instruct", "Zyphra/Zamba2-1.2B", "anthracite-org/magnum-v2-4b", ] | |
imagemodelnames = ["black-forest-labs/FLUX.1-schnell"] | |
current_model_index = 0 | |
current_image_model_index = 0 | |
modelname = modelnames[current_model_index] | |
imagemodelname = imagemodelnames[current_image_model_index] | |
lastmodelnameinloadfunction = None | |
lastimagemodelnameinloadfunction = None | |
# Load the embedding model | |
embedding_model = SentenceTransformer('all-MiniLM-L6-v2') | |
# Initialize model and tokenizer as global variables | |
model = None | |
tokenizer = None | |
flux_pipe = None | |
# Dictionary to store loaded models | |
loaded_models = {} | |
def get_size_str(bytes): | |
for unit in ['B', 'KB', 'MB', 'GB', 'TB']: | |
if bytes < 1024: | |
return f"{bytes:.2f} {unit}" | |
bytes /= 1024 | |
def load_model(model_name): | |
global model, tokenizer, lastmodelnameinloadfunction, loaded_models | |
print(f"Loading model and tokenizer: {model_name}") | |
# Record initial GPU memory usage | |
initial_memory = torch.cuda.memory_allocated() | |
# Clear old model and tokenizer if they exist | |
if 'model' in globals() and model is not None: | |
model = None | |
if 'tokenizer' in globals() and tokenizer is not None: | |
tokenizer = None | |
torch.cuda.empty_cache() | |
gc.collect() | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name, | |
torch_dtype="auto", | |
device_map="auto" | |
) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model_size = sum(p.numel() * p.element_size() for p in model.parameters()) | |
tokenizer_size = sum(sys.getsizeof(v) for v in tokenizer.__dict__.values()) | |
loaded_models[model_name] = (model, tokenizer) | |
# Calculate memory usage | |
final_memory = torch.cuda.memory_allocated() | |
memory_used = final_memory - initial_memory | |
loaded_models[model_name] = [str(time.time()), memory_used] | |
lastmodelnameinloadfunction = (model_name, model_size, tokenizer_size) | |
print(f"Model and tokenizer {model_name} loaded successfully") | |
print(f"Model size: {get_size_str(model_size)}") | |
print(f"Tokenizer size: {get_size_str(tokenizer_size)}") | |
print(f"GPU memory used: {get_size_str(memory_used)}") | |
return (f"Model and tokenizer {model_name} loaded successfully. " | |
f"Model size: {get_size_str(model_size)}, " | |
f"Tokenizer size: {get_size_str(tokenizer_size)}, " | |
f"GPU memory used: {get_size_str(memory_used)}") | |
def load_image_model(imagemodelname): | |
global flux_pipe, lastimagemodelnameinloadfunction, loaded_models | |
print(f"Loading image model: {imagemodelname}") | |
# Record initial GPU memory usage | |
initial_memory = torch.cuda.memory_allocated() | |
if 'flux_pipe' in globals() and flux_pipe is not None: | |
flux_pipe = None | |
torch.cuda.empty_cache() | |
gc.collect() | |
flux_pipe = FluxPipeline.from_pretrained(imagemodelname, torch_dtype=torch.bfloat16) | |
flux_pipe.enable_model_cpu_offload() | |
model_size = sum(p.numel() * p.element_size() for p in flux_pipe.transformer.parameters()) | |
#tokenizer_size = 0 # FLUX doesn't use a separate tokenizer | |
loaded_models[imagemodelname] = flux_pipe | |
# Calculate memory usage | |
final_memory = torch.cuda.memory_allocated() | |
memory_used = final_memory - initial_memory | |
loaded_models[imagemodelname] = [str(time.time()), memory_used] | |
lastimagemodelnameinloadfunction = (imagemodelname, model_size) #, tokenizer_size) | |
print(f"Model and tokenizer {imagemodelname} loaded successfully") | |
print(f"Model size: {get_size_str(model_size)}") | |
#print(f"Tokenizer size: {get_size_str(tokenizer_size)}") | |
print(f"GPU memory used: {get_size_str(memory_used)}") | |
return (f"Model and tokenizer {imagemodelname} loaded successfully. " | |
f"Model size: {get_size_str(model_size)}, " | |
#f"Tokenizer size: {get_size_str(tokenizer_size)}, " | |
f"GPU memory used: {get_size_str(memory_used)}") | |
def clear_all_models(): | |
global model, tokenizer, flux_pipe, loaded_models | |
for model_name, model_obj in loaded_models.items(): | |
if isinstance(model_obj, tuple): | |
model_obj[0].to('cpu') | |
del model_obj[0] | |
del model_obj[1] | |
else: | |
model_obj.to('cpu') | |
del model_obj | |
model = None | |
tokenizer = None | |
flux_pipe = None | |
loaded_models.clear() | |
torch.cuda.empty_cache() | |
gc.collect() | |
return "All models cleared from memory." | |
def load_model_list(model_list): | |
messages = [] | |
for model_name in model_list: | |
message = load_model(model_name) | |
messages.append(message) | |
return "\n".join(messages) | |
def loaded_model_list(): | |
global loaded_models | |
return loaded_models | |
# Initial model load | |
load_model(modelname) | |
load_image_model(imagemodelname) | |
# Create embeddings for the knowledge base | |
knowledge_base_embeddings = embedding_model.encode([doc["content"] for doc in knowledge_base]) | |
def retrieve(query, k=2): | |
query_embedding = embedding_model.encode([query]) | |
similarities = torch.nn.functional.cosine_similarity(torch.tensor(query_embedding), torch.tensor(knowledge_base_embeddings)) | |
top_k_indices = similarities.argsort(descending=True)[:k] | |
return [(knowledge_base[i]["content"], knowledge_base[i]["id"]) for i in top_k_indices] | |
def get_ram_usage(): | |
ram = psutil.virtual_memory() | |
return f"RAM Usage: {ram.percent:.2f}%, Available: {ram.available / (1024 ** 3):.2f}GB, Total: {ram.total / (1024 ** 3):.2f}GB" | |
# Global dictionary to store outputs | |
output_dict = {} | |
def empty_output_dict(): | |
global output_dict | |
output_dict = {} | |
print("Output dictionary has been emptied.") | |
def get_model_details(model): | |
return { | |
"name": model.config.name_or_path, | |
"architecture": model.config.architectures[0] if model.config.architectures else "Unknown", | |
"num_parameters": sum(p.numel() for p in model.parameters()), | |
} | |
def get_tokenizer_details(tokenizer): | |
return { | |
"name": tokenizer.__class__.__name__, | |
"vocab_size": tokenizer.vocab_size, | |
"model_max_length": tokenizer.model_max_length, | |
} | |
def generate_response(prompt, use_rag, stream=False): | |
global output_dict, model, tokenizer | |
print(zero.device) # This will print 'cuda:0' inside the @spaces.GPU decorated function | |
torch.cuda.empty_cache() | |
print(dir(model)) | |
if use_rag: | |
retrieved_docs = retrieve(prompt) | |
context = " ".join([doc for doc, _ in retrieved_docs]) | |
doc_ids = [doc_id for _, doc_id in retrieved_docs] | |
full_prompt = f"Context: {context}\nQuestion: {prompt}\nAnswer:" | |
else: | |
full_prompt = prompt | |
doc_ids = None | |
messages = [ | |
{"role": "system", "content": "You are a helpful assistant."}, | |
{"role": "user", "content": full_prompt} | |
] | |
text = tokenizer.apply_chat_template( | |
messages, | |
tokenize=False, | |
add_generation_prompt=True | |
) | |
model_inputs = tokenizer([text], return_tensors="pt").to(zero.device) | |
start_time = time.time() | |
total_tokens = 0 | |
print(output_dict) | |
output_key = f"output_{len(output_dict) + 1}" | |
print(output_key) | |
output_dict[output_key] = { | |
"input_prompt": prompt, | |
"full_prompt": full_prompt, | |
"use_rag": use_rag, | |
"generated_text": "", | |
"tokens_per_second": 0, | |
"ram_usage": "", | |
"doc_ids": doc_ids if doc_ids else "N/A", | |
"model_details": get_model_details(model), | |
"tokenizer_details": get_tokenizer_details(tokenizer), | |
"timestamp": time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(start_time)) | |
} | |
print(output_dict) | |
if stream: | |
streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True) | |
generation_kwargs = dict( | |
model_inputs, | |
streamer=streamer, | |
max_new_tokens=512, | |
temperature=0.7, | |
) | |
thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
thread.start() | |
for new_text in streamer: | |
output_dict[output_key]["generated_text"] += new_text | |
total_tokens += 1 | |
current_time = time.time() | |
tokens_per_second = total_tokens / (current_time - start_time) | |
ram_usage = get_ram_usage() | |
output_dict[output_key]["tokens_per_second"] = f"{tokens_per_second:.2f}" | |
output_dict[output_key]["ram_usage"] = ram_usage | |
yield (output_dict[output_key]["generated_text"], | |
output_dict[output_key]["tokens_per_second"], | |
output_dict[output_key]["ram_usage"], | |
output_dict[output_key]["doc_ids"]) | |
else: | |
generated_ids = model.generate( | |
model_inputs.input_ids, | |
max_new_tokens=512 | |
) | |
generated_ids = [ | |
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) | |
] | |
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
total_tokens = len(generated_ids[0]) | |
end_time = time.time() | |
tokens_per_second = total_tokens / (end_time - start_time) | |
ram_usage = get_ram_usage() | |
output_dict[output_key]["generated_text"] = response | |
output_dict[output_key]["tokens_per_second"] = f"{tokens_per_second:.2f}" | |
output_dict[output_key]["ram_usage"] = ram_usage | |
print(output_dict) | |
yield (output_dict[output_key]["generated_text"], | |
output_dict[output_key]["tokens_per_second"], | |
output_dict[output_key]["ram_usage"], | |
output_dict[output_key]["doc_ids"]) | |
def generate_image(prompt): | |
global output_dict, flux_pipe | |
print(dir(flux_pipe)) | |
# Generate image using FLUX | |
image = flux_pipe( | |
prompt, | |
guidance_scale=0.0, | |
num_inference_steps=4, | |
max_sequence_length=256, | |
generator=torch.Generator("cpu").manual_seed(0) | |
).images[0] | |
image_path = f"flux_output_{time.time()}.png" | |
print(image_path) | |
image.save(image_path) | |
ram_usage = get_ram_usage() | |
return image_path, ram_usage, image_path | |
def get_output_details(output_key): | |
if output_key in output_dict: | |
return output_dict[output_key] | |
else: | |
return f"No output found for key: {output_key}" | |
# Update the switch_model function to return the load_model message | |
def switch_model(choice): | |
global modelname | |
modelname = choice | |
load_message = load_model(modelname) | |
return load_message, f"Current model: {modelname}" | |
# Update the model_change_handler function | |
def model_change_handler(choice): | |
message, current_model = switch_model(choice) | |
return message, current_model, message # Use the same message for both outputs | |
def format_output_dict(): | |
global output_dict | |
formatted_output = "" | |
for key, value in output_dict.items(): | |
formatted_output += f"Key: {key}\n" | |
formatted_output += json.dumps(value, indent=2) | |
formatted_output += "\n\n" | |
print(formatted_output) | |
return formatted_output |