|
|
|
import gradio as gr |
|
|
|
from transformers import AutoTokenizer, AutoConfig, AutoModelForSequenceClassification |
|
from scipy.special import softmax |
|
|
|
|
|
|
|
model_path = "KwameOO/covid-tweet-sentiment-analyzer-roberta" |
|
tokenizer = AutoTokenizer.from_pretrained(model_path) |
|
config = AutoConfig.from_pretrained(model_path) |
|
model = AutoModelForSequenceClassification.from_pretrained(model_path) |
|
|
|
|
|
def preprocess(text): |
|
new_text = [] |
|
for t in text.split(" "): |
|
t = "@user" if t.startswith("@") and len(t) > 1 else t |
|
t = "http" if t.startswith("http") else t |
|
new_text.append(t) |
|
return " ".join(new_text) |
|
|
|
|
|
def sentiment_analysis(text): |
|
text = preprocess(text) |
|
|
|
encoded_input = tokenizer(text, return_tensors = "pt") |
|
output = model(**encoded_input) |
|
scores_ = output[0][0].detach().numpy() |
|
scores_ = softmax(scores_) |
|
|
|
|
|
labels = ["Negative", "Neutral", "Positive"] |
|
scores = {l:float(s) for (l,s) in zip(labels, scores_)} |
|
|
|
return scores |
|
|
|
|
|
|
|
app = gr.Interface(fn = sentiment_analysis, |
|
inputs = gr.Textbox(label = "Write your text or tweet here..."), |
|
outputs = gr.Label(label = "Predicted Sentiment..."), |
|
title = "Sentiment Analysis of Tweets on COVID-19 Vaccines", |
|
description = "To vaccinate or not? This app analyzes sentiment of text based on tweets tweets about COVID-19 Vaccines using a fine-tuned roBERTA model", |
|
interpretation = "default", |
|
examples = [["The idea of a vaccine in record time sure sounds interesting!"]] |
|
) |
|
|
|
app.launch() |