# Import the required Libraries import gradio as gr from transformers import AutoTokenizer, AutoConfig, AutoModelForSequenceClassification from scipy.special import softmax # Requirements model_path = "KwameOO/covid-tweet-sentiment-analyzer-roberta" tokenizer = AutoTokenizer.from_pretrained(model_path) config = AutoConfig.from_pretrained(model_path) model = AutoModelForSequenceClassification.from_pretrained(model_path) # Preprocess text (username and link placeholders) def preprocess(text): new_text = [] for t in text.split(" "): t = "@user" if t.startswith("@") and len(t) > 1 else t t = "http" if t.startswith("http") else t new_text.append(t) return " ".join(new_text) # ---- Function to process the input and return prediction def sentiment_analysis(text): text = preprocess(text) encoded_input = tokenizer(text, return_tensors = "pt") # for PyTorch-based models output = model(**encoded_input) scores_ = output[0][0].detach().numpy() scores_ = softmax(scores_) # Format output dict of scores labels = ["Negative", "Neutral", "Positive"] scores = {l:float(s) for (l,s) in zip(labels, scores_)} return scores # ---- Gradio app interface app = gr.Interface(fn = sentiment_analysis, inputs = gr.Textbox(label = "Write your text or tweet here..."), outputs = gr.Label(label = "Predicted Sentiment..."), title = "Sentiment Analysis of Tweets on COVID-19 Vaccines", description = "To vaccinate or not? This app analyzes sentiment of text based on tweets tweets about COVID-19 Vaccines using a fine-tuned roBERTA model", interpretation = "default", examples = [["The idea of a vaccine in record time sure sounds interesting!"]] ) app.launch()