File size: 8,646 Bytes
4d0eb62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
# Copyright (c) OpenMMLab. All rights reserved.
from pathlib import Path
from typing import Callable, List, Optional, Union

import numpy as np
import torch
from mmcv.image import imread
from mmengine.config import Config
from mmengine.dataset import Compose, default_collate

from mmpretrain.registry import TRANSFORMS
from mmpretrain.structures import DataSample
from .base import BaseInferencer, InputType, ModelType
from .model import list_models


class ImageClassificationInferencer(BaseInferencer):
    """The inferencer for image classification.

    Args:
        model (BaseModel | str | Config): A model name or a path to the config
            file, or a :obj:`BaseModel` object. The model name can be found
            by ``ImageClassificationInferencer.list_models()`` and you can also
            query it in :doc:`/modelzoo_statistics`.
        pretrained (str, optional): Path to the checkpoint. If None, it will
            try to find a pre-defined weight from the model you specified
            (only work if the ``model`` is a model name). Defaults to None.
        device (str, optional): Device to run inference. If None, the available
            device will be automatically used. Defaults to None.
        **kwargs: Other keyword arguments to initialize the model (only work if
            the ``model`` is a model name).

    Example:
        1. Use a pre-trained model in MMPreTrain to inference an image.

           >>> from mmpretrain import ImageClassificationInferencer
           >>> inferencer = ImageClassificationInferencer('resnet50_8xb32_in1k')
           >>> inferencer('demo/demo.JPEG')
           [{'pred_score': array([...]),
             'pred_label': 65,
             'pred_score': 0.6649367809295654,
             'pred_class': 'sea snake'}]

        2. Use a config file and checkpoint to inference multiple images on GPU,
           and save the visualization results in a folder.

           >>> from mmpretrain import ImageClassificationInferencer
           >>> inferencer = ImageClassificationInferencer(
                   model='configs/resnet/resnet50_8xb32_in1k.py',
                   pretrained='https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_8xb32_in1k_20210831-ea4938fc.pth',
                   device='cuda')
           >>> inferencer(['demo/dog.jpg', 'demo/bird.JPEG'], show_dir="./visualize/")
    """  # noqa: E501

    visualize_kwargs: set = {
        'resize', 'rescale_factor', 'draw_score', 'show', 'show_dir',
        'wait_time'
    }

    def __init__(self,
                 model: ModelType,
                 pretrained: Union[bool, str] = True,
                 device: Union[str, torch.device, None] = None,
                 classes=None,
                 **kwargs) -> None:
        super().__init__(
            model=model, pretrained=pretrained, device=device, **kwargs)

        if classes is not None:
            self.classes = classes
        else:
            self.classes = getattr(self.model, '_dataset_meta',
                                   {}).get('classes')

    def __call__(self,
                 inputs: InputType,
                 return_datasamples: bool = False,
                 batch_size: int = 1,
                 **kwargs) -> dict:
        """Call the inferencer.

        Args:
            inputs (str | array | list): The image path or array, or a list of
                images.
            return_datasamples (bool): Whether to return results as
                :obj:`DataSample`. Defaults to False.
            batch_size (int): Batch size. Defaults to 1.
            resize (int, optional): Resize the short edge of the image to the
                specified length before visualization. Defaults to None.
            rescale_factor (float, optional): Rescale the image by the rescale
                factor for visualization. This is helpful when the image is too
                large or too small for visualization. Defaults to None.
            draw_score (bool): Whether to draw the prediction scores
                of prediction categories. Defaults to True.
            show (bool): Whether to display the visualization result in a
                window. Defaults to False.
            wait_time (float): The display time (s). Defaults to 0, which means
                "forever".
            show_dir (str, optional): If not None, save the visualization
                results in the specified directory. Defaults to None.

        Returns:
            list: The inference results.
        """
        return super().__call__(
            inputs,
            return_datasamples=return_datasamples,
            batch_size=batch_size,
            **kwargs)

    def _init_pipeline(self, cfg: Config) -> Callable:
        test_pipeline_cfg = cfg.test_dataloader.dataset.pipeline
        if test_pipeline_cfg[0]['type'] == 'LoadImageFromFile':
            # Image loading is finished in `self.preprocess`.
            test_pipeline_cfg = test_pipeline_cfg[1:]
        test_pipeline = Compose(
            [TRANSFORMS.build(t) for t in test_pipeline_cfg])
        return test_pipeline

    def preprocess(self, inputs: List[InputType], batch_size: int = 1):

        def load_image(input_):
            img = imread(input_)
            if img is None:
                raise ValueError(f'Failed to read image {input_}.')
            return dict(
                img=img,
                img_shape=img.shape[:2],
                ori_shape=img.shape[:2],
            )

        pipeline = Compose([load_image, self.pipeline])

        chunked_data = self._get_chunk_data(map(pipeline, inputs), batch_size)
        yield from map(default_collate, chunked_data)

    def visualize(self,
                  ori_inputs: List[InputType],
                  preds: List[DataSample],
                  show: bool = False,
                  wait_time: int = 0,
                  resize: Optional[int] = None,
                  rescale_factor: Optional[float] = None,
                  draw_score=True,
                  show_dir=None):
        if not show and show_dir is None:
            return None

        if self.visualizer is None:
            from mmpretrain.visualization import UniversalVisualizer
            self.visualizer = UniversalVisualizer()

        visualization = []
        for i, (input_, data_sample) in enumerate(zip(ori_inputs, preds)):
            image = imread(input_)
            if isinstance(input_, str):
                # The image loaded from path is BGR format.
                image = image[..., ::-1]
                name = Path(input_).stem
            else:
                name = str(i)

            if show_dir is not None:
                show_dir = Path(show_dir)
                show_dir.mkdir(exist_ok=True)
                out_file = str((show_dir / name).with_suffix('.png'))
            else:
                out_file = None

            self.visualizer.visualize_cls(
                image,
                data_sample,
                classes=self.classes,
                resize=resize,
                show=show,
                wait_time=wait_time,
                rescale_factor=rescale_factor,
                draw_gt=False,
                draw_pred=True,
                draw_score=draw_score,
                name=name,
                out_file=out_file)
            visualization.append(self.visualizer.get_image())
        if show:
            self.visualizer.close()
        return visualization

    def postprocess(self,
                    preds: List[DataSample],
                    visualization: List[np.ndarray],
                    return_datasamples=False) -> dict:
        if return_datasamples:
            return preds

        results = []
        for data_sample in preds:
            pred_scores = data_sample.pred_score
            pred_score = float(torch.max(pred_scores).item())
            pred_label = torch.argmax(pred_scores).item()
            result = {
                'pred_scores': pred_scores.detach().cpu().numpy(),
                'pred_label': pred_label,
                'pred_score': pred_score,
            }
            if self.classes is not None:
                result['pred_class'] = self.classes[pred_label]
            results.append(result)

        return results

    @staticmethod
    def list_models(pattern: Optional[str] = None):
        """List all available model names.

        Args:
            pattern (str | None): A wildcard pattern to match model names.

        Returns:
            List[str]: a list of model names.
        """
        return list_models(pattern=pattern, task='Image Classification')