Spaces:
Runtime error
Runtime error
File size: 7,258 Bytes
3094730 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
# Copyright (c) OpenMMLab. All rights reserved.
import math
from typing import List, Sequence, Union
import torch.nn as nn
from mmcv.cnn import ConvModule, DepthwiseSeparableConvModule
from mmdet.models.backbones.csp_darknet import CSPLayer
from mmdet.utils import ConfigType, OptConfigType, OptMultiConfig
from mmyolo.registry import MODELS
from ..layers import SPPFBottleneck
from .base_backbone import BaseBackbone
@MODELS.register_module()
class CSPNeXt(BaseBackbone):
"""CSPNeXt backbone used in RTMDet.
Args:
arch (str): Architecture of CSPNeXt, from {P5, P6}.
Defaults to P5.
deepen_factor (float): Depth multiplier, multiply number of
blocks in CSP layer by this amount. Defaults to 1.0.
widen_factor (float): Width multiplier, multiply number of
channels in each layer by this amount. Defaults to 1.0.
out_indices (Sequence[int]): Output from which stages.
Defaults to (2, 3, 4).
frozen_stages (int): Stages to be frozen (stop grad and set eval
mode). -1 means not freezing any parameters. Defaults to -1.
plugins (list[dict]): List of plugins for stages, each dict contains:
- cfg (dict, required): Cfg dict to build plugin.Defaults to
- stages (tuple[bool], optional): Stages to apply plugin, length
should be same as 'num_stages'.
use_depthwise (bool): Whether to use depthwise separable convolution.
Defaults to False.
expand_ratio (float): Ratio to adjust the number of channels of the
hidden layer. Defaults to 0.5.
arch_ovewrite (list): Overwrite default arch settings.
Defaults to None.
channel_attention (bool): Whether to add channel attention in each
stage. Defaults to True.
conv_cfg (:obj:`ConfigDict` or dict, optional): Config dict for
convolution layer. Defaults to None.
norm_cfg (:obj:`ConfigDict` or dict): Dictionary to construct and
config norm layer. Defaults to dict(type='BN', requires_grad=True).
act_cfg (:obj:`ConfigDict` or dict): Config dict for activation layer.
Defaults to dict(type='SiLU', inplace=True).
norm_eval (bool): Whether to set norm layers to eval mode, namely,
freeze running stats (mean and var). Note: Effect on Batch Norm
and its variants only.
init_cfg (:obj:`ConfigDict` or dict or list[dict] or
list[:obj:`ConfigDict`]): Initialization config dict.
"""
# From left to right:
# in_channels, out_channels, num_blocks, add_identity, use_spp
arch_settings = {
'P5': [[64, 128, 3, True, False], [128, 256, 6, True, False],
[256, 512, 6, True, False], [512, 1024, 3, False, True]],
'P6': [[64, 128, 3, True, False], [128, 256, 6, True, False],
[256, 512, 6, True, False], [512, 768, 3, True, False],
[768, 1024, 3, False, True]]
}
def __init__(
self,
arch: str = 'P5',
deepen_factor: float = 1.0,
widen_factor: float = 1.0,
input_channels: int = 3,
out_indices: Sequence[int] = (2, 3, 4),
frozen_stages: int = -1,
plugins: Union[dict, List[dict]] = None,
use_depthwise: bool = False,
expand_ratio: float = 0.5,
arch_ovewrite: dict = None,
channel_attention: bool = True,
conv_cfg: OptConfigType = None,
norm_cfg: ConfigType = dict(type='BN'),
act_cfg: ConfigType = dict(type='SiLU', inplace=True),
norm_eval: bool = False,
init_cfg: OptMultiConfig = dict(
type='Kaiming',
layer='Conv2d',
a=math.sqrt(5),
distribution='uniform',
mode='fan_in',
nonlinearity='leaky_relu')
) -> None:
arch_setting = self.arch_settings[arch]
if arch_ovewrite:
arch_setting = arch_ovewrite
self.channel_attention = channel_attention
self.use_depthwise = use_depthwise
self.conv = DepthwiseSeparableConvModule \
if use_depthwise else ConvModule
self.expand_ratio = expand_ratio
self.conv_cfg = conv_cfg
super().__init__(
arch_setting,
deepen_factor,
widen_factor,
input_channels,
out_indices,
frozen_stages=frozen_stages,
plugins=plugins,
norm_cfg=norm_cfg,
act_cfg=act_cfg,
norm_eval=norm_eval,
init_cfg=init_cfg)
def build_stem_layer(self) -> nn.Module:
"""Build a stem layer."""
stem = nn.Sequential(
ConvModule(
3,
int(self.arch_setting[0][0] * self.widen_factor // 2),
3,
padding=1,
stride=2,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg),
ConvModule(
int(self.arch_setting[0][0] * self.widen_factor // 2),
int(self.arch_setting[0][0] * self.widen_factor // 2),
3,
padding=1,
stride=1,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg),
ConvModule(
int(self.arch_setting[0][0] * self.widen_factor // 2),
int(self.arch_setting[0][0] * self.widen_factor),
3,
padding=1,
stride=1,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg))
return stem
def build_stage_layer(self, stage_idx: int, setting: list) -> list:
"""Build a stage layer.
Args:
stage_idx (int): The index of a stage layer.
setting (list): The architecture setting of a stage layer.
"""
in_channels, out_channels, num_blocks, add_identity, use_spp = setting
in_channels = int(in_channels * self.widen_factor)
out_channels = int(out_channels * self.widen_factor)
num_blocks = max(round(num_blocks * self.deepen_factor), 1)
stage = []
conv_layer = self.conv(
in_channels,
out_channels,
3,
stride=2,
padding=1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg)
stage.append(conv_layer)
if use_spp:
spp = SPPFBottleneck(
out_channels,
out_channels,
kernel_sizes=5,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg)
stage.append(spp)
csp_layer = CSPLayer(
out_channels,
out_channels,
num_blocks=num_blocks,
add_identity=add_identity,
use_depthwise=self.use_depthwise,
use_cspnext_block=True,
expand_ratio=self.expand_ratio,
channel_attention=self.channel_attention,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg)
stage.append(csp_layer)
return stage
|