File size: 3,716 Bytes
3094730
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
# Copyright (c) OpenMMLab. All rights reserved.
from typing import List, Union

import torch.nn as nn
from mmdet.utils import ConfigType, OptMultiConfig

from mmyolo.registry import MODELS
from .. import CSPLayerWithTwoConv
from ..utils import make_divisible, make_round
from .yolov5_pafpn import YOLOv5PAFPN


@MODELS.register_module()
class YOLOv8PAFPN(YOLOv5PAFPN):
    """Path Aggregation Network used in YOLOv8.

    Args:
        in_channels (List[int]): Number of input channels per scale.
        out_channels (int): Number of output channels (used at each scale)
        deepen_factor (float): Depth multiplier, multiply number of
            blocks in CSP layer by this amount. Defaults to 1.0.
        widen_factor (float): Width multiplier, multiply number of
            channels in each layer by this amount. Defaults to 1.0.
        num_csp_blocks (int): Number of bottlenecks in CSPLayer. Defaults to 1.
        freeze_all(bool): Whether to freeze the model
        norm_cfg (dict): Config dict for normalization layer.
            Defaults to dict(type='BN', momentum=0.03, eps=0.001).
        act_cfg (dict): Config dict for activation layer.
            Defaults to dict(type='SiLU', inplace=True).
        init_cfg (dict or list[dict], optional): Initialization config dict.
            Defaults to None.
    """

    def __init__(self,
                 in_channels: List[int],
                 out_channels: Union[List[int], int],
                 deepen_factor: float = 1.0,
                 widen_factor: float = 1.0,
                 num_csp_blocks: int = 3,
                 freeze_all: bool = False,
                 norm_cfg: ConfigType = dict(
                     type='BN', momentum=0.03, eps=0.001),
                 act_cfg: ConfigType = dict(type='SiLU', inplace=True),
                 init_cfg: OptMultiConfig = None):
        super().__init__(
            in_channels=in_channels,
            out_channels=out_channels,
            deepen_factor=deepen_factor,
            widen_factor=widen_factor,
            num_csp_blocks=num_csp_blocks,
            freeze_all=freeze_all,
            norm_cfg=norm_cfg,
            act_cfg=act_cfg,
            init_cfg=init_cfg)

    def build_reduce_layer(self, idx: int) -> nn.Module:
        """build reduce layer.

        Args:
            idx (int): layer idx.

        Returns:
            nn.Module: The reduce layer.
        """
        return nn.Identity()

    def build_top_down_layer(self, idx: int) -> nn.Module:
        """build top down layer.

        Args:
            idx (int): layer idx.

        Returns:
            nn.Module: The top down layer.
        """
        return CSPLayerWithTwoConv(
            make_divisible((self.in_channels[idx - 1] + self.in_channels[idx]),
                           self.widen_factor),
            make_divisible(self.out_channels[idx - 1], self.widen_factor),
            num_blocks=make_round(self.num_csp_blocks, self.deepen_factor),
            add_identity=False,
            norm_cfg=self.norm_cfg,
            act_cfg=self.act_cfg)

    def build_bottom_up_layer(self, idx: int) -> nn.Module:
        """build bottom up layer.

        Args:
            idx (int): layer idx.

        Returns:
            nn.Module: The bottom up layer.
        """
        return CSPLayerWithTwoConv(
            make_divisible(
                (self.out_channels[idx] + self.out_channels[idx + 1]),
                self.widen_factor),
            make_divisible(self.out_channels[idx + 1], self.widen_factor),
            num_blocks=make_round(self.num_csp_blocks, self.deepen_factor),
            add_identity=False,
            norm_cfg=self.norm_cfg,
            act_cfg=self.act_cfg)