File size: 9,565 Bytes
3e06e1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
# Copyright (c) OpenMMLab. All rights reserved.
import numpy as np
from mmcv.transforms import to_tensor
from mmcv.transforms.base import BaseTransform
from mmengine.structures import InstanceData, PixelData

from mmdet.registry import TRANSFORMS
from mmdet.structures import DetDataSample
from mmdet.structures.bbox import BaseBoxes


@TRANSFORMS.register_module()
class PackDetInputs(BaseTransform):
    """Pack the inputs data for the detection / semantic segmentation /
    panoptic segmentation.

    The ``img_meta`` item is always populated.  The contents of the
    ``img_meta`` dictionary depends on ``meta_keys``. By default this includes:

        - ``img_id``: id of the image

        - ``img_path``: path to the image file

        - ``ori_shape``: original shape of the image as a tuple (h, w)

        - ``img_shape``: shape of the image input to the network as a tuple \
            (h, w).  Note that images may be zero padded on the \
            bottom/right if the batch tensor is larger than this shape.

        - ``scale_factor``: a float indicating the preprocessing scale

        - ``flip``: a boolean indicating if image flip transform was used

        - ``flip_direction``: the flipping direction

    Args:
        meta_keys (Sequence[str], optional): Meta keys to be converted to
            ``mmcv.DataContainer`` and collected in ``data[img_metas]``.
            Default: ``('img_id', 'img_path', 'ori_shape', 'img_shape',
            'scale_factor', 'flip', 'flip_direction')``
    """
    mapping_table = {
        'gt_bboxes': 'bboxes',
        'gt_bboxes_labels': 'labels',
        'gt_masks': 'masks'
    }

    def __init__(self,
                 meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
                            'scale_factor', 'flip', 'flip_direction')):
        self.meta_keys = meta_keys

    def transform(self, results: dict) -> dict:
        """Method to pack the input data.

        Args:
            results (dict): Result dict from the data pipeline.

        Returns:
            dict:

            - 'inputs' (obj:`torch.Tensor`): The forward data of models.
            - 'data_sample' (obj:`DetDataSample`): The annotation info of the
                sample.
        """
        packed_results = dict()
        if 'img' in results:
            img = results['img']
            if len(img.shape) < 3:
                img = np.expand_dims(img, -1)
            # To improve the computational speed by by 3-5 times, apply:
            # If image is not contiguous, use
            # `numpy.transpose()` followed by `numpy.ascontiguousarray()`
            # If image is already contiguous, use
            # `torch.permute()` followed by `torch.contiguous()`
            # Refer to https://github.com/open-mmlab/mmdetection/pull/9533
            # for more details
            if not img.flags.c_contiguous:
                img = np.ascontiguousarray(img.transpose(2, 0, 1))
                img = to_tensor(img)
            else:
                img = to_tensor(img).permute(2, 0, 1).contiguous()

            packed_results['inputs'] = img

        if 'gt_ignore_flags' in results:
            valid_idx = np.where(results['gt_ignore_flags'] == 0)[0]
            ignore_idx = np.where(results['gt_ignore_flags'] == 1)[0]

        data_sample = DetDataSample()
        instance_data = InstanceData()
        ignore_instance_data = InstanceData()

        for key in self.mapping_table.keys():
            if key not in results:
                continue
            if key == 'gt_masks' or isinstance(results[key], BaseBoxes):
                if 'gt_ignore_flags' in results:
                    instance_data[
                        self.mapping_table[key]] = results[key][valid_idx]
                    ignore_instance_data[
                        self.mapping_table[key]] = results[key][ignore_idx]
                else:
                    instance_data[self.mapping_table[key]] = results[key]
            else:
                if 'gt_ignore_flags' in results:
                    instance_data[self.mapping_table[key]] = to_tensor(
                        results[key][valid_idx])
                    ignore_instance_data[self.mapping_table[key]] = to_tensor(
                        results[key][ignore_idx])
                else:
                    instance_data[self.mapping_table[key]] = to_tensor(
                        results[key])
        data_sample.gt_instances = instance_data
        data_sample.ignored_instances = ignore_instance_data

        if 'proposals' in results:
            proposals = InstanceData(
                bboxes=to_tensor(results['proposals']),
                scores=to_tensor(results['proposals_scores']))
            data_sample.proposals = proposals

        if 'gt_seg_map' in results:
            gt_sem_seg_data = dict(
                sem_seg=to_tensor(results['gt_seg_map'][None, ...].copy()))
            data_sample.gt_sem_seg = PixelData(**gt_sem_seg_data)

        img_meta = {}
        for key in self.meta_keys:
            assert key in results, f'`{key}` is not found in `results`, ' \
                f'the valid keys are {list(results)}.'
            img_meta[key] = results[key]

        data_sample.set_metainfo(img_meta)
        packed_results['data_samples'] = data_sample

        return packed_results

    def __repr__(self) -> str:
        repr_str = self.__class__.__name__
        repr_str += f'(meta_keys={self.meta_keys})'
        return repr_str


@TRANSFORMS.register_module()
class ToTensor:
    """Convert some results to :obj:`torch.Tensor` by given keys.

    Args:
        keys (Sequence[str]): Keys that need to be converted to Tensor.
    """

    def __init__(self, keys):
        self.keys = keys

    def __call__(self, results):
        """Call function to convert data in results to :obj:`torch.Tensor`.

        Args:
            results (dict): Result dict contains the data to convert.

        Returns:
            dict: The result dict contains the data converted
                to :obj:`torch.Tensor`.
        """
        for key in self.keys:
            results[key] = to_tensor(results[key])
        return results

    def __repr__(self):
        return self.__class__.__name__ + f'(keys={self.keys})'


@TRANSFORMS.register_module()
class ImageToTensor:
    """Convert image to :obj:`torch.Tensor` by given keys.

    The dimension order of input image is (H, W, C). The pipeline will convert
    it to (C, H, W). If only 2 dimension (H, W) is given, the output would be
    (1, H, W).

    Args:
        keys (Sequence[str]): Key of images to be converted to Tensor.
    """

    def __init__(self, keys):
        self.keys = keys

    def __call__(self, results):
        """Call function to convert image in results to :obj:`torch.Tensor` and
        transpose the channel order.

        Args:
            results (dict): Result dict contains the image data to convert.

        Returns:
            dict: The result dict contains the image converted
                to :obj:`torch.Tensor` and permuted to (C, H, W) order.
        """
        for key in self.keys:
            img = results[key]
            if len(img.shape) < 3:
                img = np.expand_dims(img, -1)
            results[key] = to_tensor(img).permute(2, 0, 1).contiguous()

        return results

    def __repr__(self):
        return self.__class__.__name__ + f'(keys={self.keys})'


@TRANSFORMS.register_module()
class Transpose:
    """Transpose some results by given keys.

    Args:
        keys (Sequence[str]): Keys of results to be transposed.
        order (Sequence[int]): Order of transpose.
    """

    def __init__(self, keys, order):
        self.keys = keys
        self.order = order

    def __call__(self, results):
        """Call function to transpose the channel order of data in results.

        Args:
            results (dict): Result dict contains the data to transpose.

        Returns:
            dict: The result dict contains the data transposed to \
                ``self.order``.
        """
        for key in self.keys:
            results[key] = results[key].transpose(self.order)
        return results

    def __repr__(self):
        return self.__class__.__name__ + \
            f'(keys={self.keys}, order={self.order})'


@TRANSFORMS.register_module()
class WrapFieldsToLists:
    """Wrap fields of the data dictionary into lists for evaluation.

    This class can be used as a last step of a test or validation
    pipeline for single image evaluation or inference.

    Example:
        >>> test_pipeline = [
        >>>    dict(type='LoadImageFromFile'),
        >>>    dict(type='Normalize',
                    mean=[123.675, 116.28, 103.53],
                    std=[58.395, 57.12, 57.375],
                    to_rgb=True),
        >>>    dict(type='Pad', size_divisor=32),
        >>>    dict(type='ImageToTensor', keys=['img']),
        >>>    dict(type='Collect', keys=['img']),
        >>>    dict(type='WrapFieldsToLists')
        >>> ]
    """

    def __call__(self, results):
        """Call function to wrap fields into lists.

        Args:
            results (dict): Result dict contains the data to wrap.

        Returns:
            dict: The result dict where value of ``self.keys`` are wrapped \
                into list.
        """

        # Wrap dict fields into lists
        for key, val in results.items():
            results[key] = [val]
        return results

    def __repr__(self):
        return f'{self.__class__.__name__}()'