File size: 30,322 Bytes
3e06e1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
# Copyright (c) OpenMMLab. All rights reserved.

from typing import Optional, Union

import cv2
import mmcv
import numpy as np
from mmcv.transforms import BaseTransform
from mmcv.transforms.utils import cache_randomness

from mmdet.registry import TRANSFORMS
from mmdet.structures.bbox import autocast_box_type
from .augment_wrappers import _MAX_LEVEL, level_to_mag


@TRANSFORMS.register_module()
class GeomTransform(BaseTransform):
    """Base class for geometric transformations. All geometric transformations
    need to inherit from this base class. ``GeomTransform`` unifies the class
    attributes and class functions of geometric transformations (ShearX,
    ShearY, Rotate, TranslateX, and TranslateY), and records the homography
    matrix.

    Required Keys:

    - img
    - gt_bboxes (BaseBoxes[torch.float32]) (optional)
    - gt_masks (BitmapMasks | PolygonMasks) (optional)
    - gt_seg_map (np.uint8) (optional)

    Modified Keys:

    - img
    - gt_bboxes
    - gt_masks
    - gt_seg_map

    Added Keys:

    - homography_matrix

    Args:
        prob (float): The probability for performing the geometric
            transformation and should be in range [0, 1]. Defaults to 1.0.
        level (int, optional): The level should be in range [0, _MAX_LEVEL].
            If level is None, it will generate from [0, _MAX_LEVEL] randomly.
            Defaults to None.
        min_mag (float): The minimum magnitude for geometric transformation.
            Defaults to 0.0.
        max_mag (float): The maximum magnitude for geometric transformation.
            Defaults to 1.0.
        reversal_prob (float): The probability that reverses the geometric
            transformation magnitude. Should be in range [0,1].
            Defaults to 0.5.
        img_border_value (int | float | tuple): The filled values for
            image border. If float, the same fill value will be used for
            all the three channels of image. If tuple, it should be 3 elements.
            Defaults to 128.
        mask_border_value (int): The fill value used for masks. Defaults to 0.
        seg_ignore_label (int): The fill value used for segmentation map.
            Note this value must equals ``ignore_label`` in ``semantic_head``
            of the corresponding config. Defaults to 255.
        interpolation (str): Interpolation method, accepted values are
            "nearest", "bilinear", "bicubic", "area", "lanczos" for 'cv2'
            backend, "nearest", "bilinear" for 'pillow' backend. Defaults
            to 'bilinear'.
    """

    def __init__(self,
                 prob: float = 1.0,
                 level: Optional[int] = None,
                 min_mag: float = 0.0,
                 max_mag: float = 1.0,
                 reversal_prob: float = 0.5,
                 img_border_value: Union[int, float, tuple] = 128,
                 mask_border_value: int = 0,
                 seg_ignore_label: int = 255,
                 interpolation: str = 'bilinear') -> None:
        assert 0 <= prob <= 1.0, f'The probability of the transformation ' \
                                 f'should be in range [0,1], got {prob}.'
        assert level is None or isinstance(level, int), \
            f'The level should be None or type int, got {type(level)}.'
        assert level is None or 0 <= level <= _MAX_LEVEL, \
            f'The level should be in range [0,{_MAX_LEVEL}], got {level}.'
        assert isinstance(min_mag, float), \
            f'min_mag should be type float, got {type(min_mag)}.'
        assert isinstance(max_mag, float), \
            f'max_mag should be type float, got {type(max_mag)}.'
        assert min_mag <= max_mag, \
            f'min_mag should smaller than max_mag, ' \
            f'got min_mag={min_mag} and max_mag={max_mag}'
        assert isinstance(reversal_prob, float), \
            f'reversal_prob should be type float, got {type(max_mag)}.'
        assert 0 <= reversal_prob <= 1.0, \
            f'The reversal probability of the transformation magnitude ' \
            f'should be type float, got {type(reversal_prob)}.'
        if isinstance(img_border_value, (float, int)):
            img_border_value = tuple([float(img_border_value)] * 3)
        elif isinstance(img_border_value, tuple):
            assert len(img_border_value) == 3, \
                f'img_border_value as tuple must have 3 elements, ' \
                f'got {len(img_border_value)}.'
            img_border_value = tuple([float(val) for val in img_border_value])
        else:
            raise ValueError(
                'img_border_value must be float or tuple with 3 elements.')
        assert np.all([0 <= val <= 255 for val in img_border_value]), 'all ' \
            'elements of img_border_value should between range [0,255].' \
            f'got {img_border_value}.'
        self.prob = prob
        self.level = level
        self.min_mag = min_mag
        self.max_mag = max_mag
        self.reversal_prob = reversal_prob
        self.img_border_value = img_border_value
        self.mask_border_value = mask_border_value
        self.seg_ignore_label = seg_ignore_label
        self.interpolation = interpolation

    def _transform_img(self, results: dict, mag: float) -> None:
        """Transform the image."""
        pass

    def _transform_masks(self, results: dict, mag: float) -> None:
        """Transform the masks."""
        pass

    def _transform_seg(self, results: dict, mag: float) -> None:
        """Transform the segmentation map."""
        pass

    def _get_homography_matrix(self, results: dict, mag: float) -> np.ndarray:
        """Get the homography matrix for the geometric transformation."""
        return np.eye(3, dtype=np.float32)

    def _transform_bboxes(self, results: dict, mag: float) -> None:
        """Transform the bboxes."""
        results['gt_bboxes'].project_(self.homography_matrix)
        results['gt_bboxes'].clip_(results['img_shape'])

    def _record_homography_matrix(self, results: dict) -> None:
        """Record the homography matrix for the geometric transformation."""
        if results.get('homography_matrix', None) is None:
            results['homography_matrix'] = self.homography_matrix
        else:
            results['homography_matrix'] = self.homography_matrix @ results[
                'homography_matrix']

    @cache_randomness
    def _random_disable(self):
        """Randomly disable the transform."""
        return np.random.rand() > self.prob

    @cache_randomness
    def _get_mag(self):
        """Get the magnitude of the transform."""
        mag = level_to_mag(self.level, self.min_mag, self.max_mag)
        return -mag if np.random.rand() > self.reversal_prob else mag

    @autocast_box_type()
    def transform(self, results: dict) -> dict:
        """Transform function for images, bounding boxes, masks and semantic
        segmentation map.

        Args:
            results (dict): Result dict from loading pipeline.

        Returns:
            dict: Transformed results.
        """

        if self._random_disable():
            return results
        mag = self._get_mag()
        self.homography_matrix = self._get_homography_matrix(results, mag)
        self._record_homography_matrix(results)
        self._transform_img(results, mag)
        if results.get('gt_bboxes', None) is not None:
            self._transform_bboxes(results, mag)
        if results.get('gt_masks', None) is not None:
            self._transform_masks(results, mag)
        if results.get('gt_seg_map', None) is not None:
            self._transform_seg(results, mag)
        return results

    def __repr__(self) -> str:
        repr_str = self.__class__.__name__
        repr_str += f'(prob={self.prob}, '
        repr_str += f'level={self.level}, '
        repr_str += f'min_mag={self.min_mag}, '
        repr_str += f'max_mag={self.max_mag}, '
        repr_str += f'reversal_prob={self.reversal_prob}, '
        repr_str += f'img_border_value={self.img_border_value}, '
        repr_str += f'mask_border_value={self.mask_border_value}, '
        repr_str += f'seg_ignore_label={self.seg_ignore_label}, '
        repr_str += f'interpolation={self.interpolation})'
        return repr_str


@TRANSFORMS.register_module()
class ShearX(GeomTransform):
    """Shear the images, bboxes, masks and segmentation map horizontally.

    Required Keys:

    - img
    - gt_bboxes (BaseBoxes[torch.float32]) (optional)
    - gt_masks (BitmapMasks | PolygonMasks) (optional)
    - gt_seg_map (np.uint8) (optional)

    Modified Keys:

    - img
    - gt_bboxes
    - gt_masks
    - gt_seg_map

    Added Keys:

    - homography_matrix

    Args:
        prob (float): The probability for performing Shear and should be in
            range [0, 1]. Defaults to 1.0.
        level (int, optional): The level should be in range [0, _MAX_LEVEL].
            If level is None, it will generate from [0, _MAX_LEVEL] randomly.
            Defaults to None.
        min_mag (float): The minimum angle for the horizontal shear.
            Defaults to 0.0.
        max_mag (float): The maximum angle for the horizontal shear.
            Defaults to 30.0.
        reversal_prob (float): The probability that reverses the horizontal
            shear magnitude. Should be in range [0,1]. Defaults to 0.5.
        img_border_value (int | float | tuple): The filled values for
            image border. If float, the same fill value will be used for
            all the three channels of image. If tuple, it should be 3 elements.
            Defaults to 128.
        mask_border_value (int): The fill value used for masks. Defaults to 0.
        seg_ignore_label (int): The fill value used for segmentation map.
            Note this value must equals ``ignore_label`` in ``semantic_head``
            of the corresponding config. Defaults to 255.
        interpolation (str): Interpolation method, accepted values are
            "nearest", "bilinear", "bicubic", "area", "lanczos" for 'cv2'
            backend, "nearest", "bilinear" for 'pillow' backend. Defaults
            to 'bilinear'.
    """

    def __init__(self,
                 prob: float = 1.0,
                 level: Optional[int] = None,
                 min_mag: float = 0.0,
                 max_mag: float = 30.0,
                 reversal_prob: float = 0.5,
                 img_border_value: Union[int, float, tuple] = 128,
                 mask_border_value: int = 0,
                 seg_ignore_label: int = 255,
                 interpolation: str = 'bilinear') -> None:
        assert 0. <= min_mag <= 90., \
            f'min_mag angle for ShearX should be ' \
            f'in range [0, 90], got {min_mag}.'
        assert 0. <= max_mag <= 90., \
            f'max_mag angle for ShearX should be ' \
            f'in range [0, 90], got {max_mag}.'
        super().__init__(
            prob=prob,
            level=level,
            min_mag=min_mag,
            max_mag=max_mag,
            reversal_prob=reversal_prob,
            img_border_value=img_border_value,
            mask_border_value=mask_border_value,
            seg_ignore_label=seg_ignore_label,
            interpolation=interpolation)

    @cache_randomness
    def _get_mag(self):
        """Get the magnitude of the transform."""
        mag = level_to_mag(self.level, self.min_mag, self.max_mag)
        mag = np.tan(mag * np.pi / 180)
        return -mag if np.random.rand() > self.reversal_prob else mag

    def _get_homography_matrix(self, results: dict, mag: float) -> np.ndarray:
        """Get the homography matrix for ShearX."""
        return np.array([[1, mag, 0], [0, 1, 0], [0, 0, 1]], dtype=np.float32)

    def _transform_img(self, results: dict, mag: float) -> None:
        """Shear the image horizontally."""
        results['img'] = mmcv.imshear(
            results['img'],
            mag,
            direction='horizontal',
            border_value=self.img_border_value,
            interpolation=self.interpolation)

    def _transform_masks(self, results: dict, mag: float) -> None:
        """Shear the masks horizontally."""
        results['gt_masks'] = results['gt_masks'].shear(
            results['img_shape'],
            mag,
            direction='horizontal',
            border_value=self.mask_border_value,
            interpolation=self.interpolation)

    def _transform_seg(self, results: dict, mag: float) -> None:
        """Shear the segmentation map horizontally."""
        results['gt_seg_map'] = mmcv.imshear(
            results['gt_seg_map'],
            mag,
            direction='horizontal',
            border_value=self.seg_ignore_label,
            interpolation='nearest')


@TRANSFORMS.register_module()
class ShearY(GeomTransform):
    """Shear the images, bboxes, masks and segmentation map vertically.

    Required Keys:

    - img
    - gt_bboxes (BaseBoxes[torch.float32]) (optional)
    - gt_masks (BitmapMasks | PolygonMasks) (optional)
    - gt_seg_map (np.uint8) (optional)

    Modified Keys:

    - img
    - gt_bboxes
    - gt_masks
    - gt_seg_map

    Added Keys:

    - homography_matrix

    Args:
        prob (float): The probability for performing ShearY and should be in
            range [0, 1]. Defaults to 1.0.
        level (int, optional): The level should be in range [0,_MAX_LEVEL].
            If level is None, it will generate from [0, _MAX_LEVEL] randomly.
            Defaults to None.
        min_mag (float): The minimum angle for the vertical shear.
            Defaults to 0.0.
        max_mag (float): The maximum angle for the vertical shear.
            Defaults to 30.0.
        reversal_prob (float): The probability that reverses the vertical
            shear magnitude. Should be in range [0,1]. Defaults to 0.5.
        img_border_value (int | float | tuple): The filled values for
            image border. If float, the same fill value will be used for
            all the three channels of image. If tuple, it should be 3 elements.
            Defaults to 128.
        mask_border_value (int): The fill value used for masks. Defaults to 0.
        seg_ignore_label (int): The fill value used for segmentation map.
            Note this value must equals ``ignore_label`` in ``semantic_head``
            of the corresponding config. Defaults to 255.
        interpolation (str): Interpolation method, accepted values are
            "nearest", "bilinear", "bicubic", "area", "lanczos" for 'cv2'
            backend, "nearest", "bilinear" for 'pillow' backend. Defaults
            to 'bilinear'.
    """

    def __init__(self,
                 prob: float = 1.0,
                 level: Optional[int] = None,
                 min_mag: float = 0.0,
                 max_mag: float = 30.,
                 reversal_prob: float = 0.5,
                 img_border_value: Union[int, float, tuple] = 128,
                 mask_border_value: int = 0,
                 seg_ignore_label: int = 255,
                 interpolation: str = 'bilinear') -> None:
        assert 0. <= min_mag <= 90., \
            f'min_mag angle for ShearY should be ' \
            f'in range [0, 90], got {min_mag}.'
        assert 0. <= max_mag <= 90., \
            f'max_mag angle for ShearY should be ' \
            f'in range [0, 90], got {max_mag}.'
        super().__init__(
            prob=prob,
            level=level,
            min_mag=min_mag,
            max_mag=max_mag,
            reversal_prob=reversal_prob,
            img_border_value=img_border_value,
            mask_border_value=mask_border_value,
            seg_ignore_label=seg_ignore_label,
            interpolation=interpolation)

    @cache_randomness
    def _get_mag(self):
        """Get the magnitude of the transform."""
        mag = level_to_mag(self.level, self.min_mag, self.max_mag)
        mag = np.tan(mag * np.pi / 180)
        return -mag if np.random.rand() > self.reversal_prob else mag

    def _get_homography_matrix(self, results: dict, mag: float) -> np.ndarray:
        """Get the homography matrix for ShearY."""
        return np.array([[1, 0, 0], [mag, 1, 0], [0, 0, 1]], dtype=np.float32)

    def _transform_img(self, results: dict, mag: float) -> None:
        """Shear the image vertically."""
        results['img'] = mmcv.imshear(
            results['img'],
            mag,
            direction='vertical',
            border_value=self.img_border_value,
            interpolation=self.interpolation)

    def _transform_masks(self, results: dict, mag: float) -> None:
        """Shear the masks vertically."""
        results['gt_masks'] = results['gt_masks'].shear(
            results['img_shape'],
            mag,
            direction='vertical',
            border_value=self.mask_border_value,
            interpolation=self.interpolation)

    def _transform_seg(self, results: dict, mag: float) -> None:
        """Shear the segmentation map vertically."""
        results['gt_seg_map'] = mmcv.imshear(
            results['gt_seg_map'],
            mag,
            direction='vertical',
            border_value=self.seg_ignore_label,
            interpolation='nearest')


@TRANSFORMS.register_module()
class Rotate(GeomTransform):
    """Rotate the images, bboxes, masks and segmentation map.

    Required Keys:

    - img
    - gt_bboxes (BaseBoxes[torch.float32]) (optional)
    - gt_masks (BitmapMasks | PolygonMasks) (optional)
    - gt_seg_map (np.uint8) (optional)

    Modified Keys:

    - img
    - gt_bboxes
    - gt_masks
    - gt_seg_map

    Added Keys:

    - homography_matrix

    Args:
        prob (float): The probability for perform transformation and
            should be in range 0 to 1. Defaults to 1.0.
        level (int, optional): The level should be in range [0, _MAX_LEVEL].
            If level is None, it will generate from [0, _MAX_LEVEL] randomly.
            Defaults to None.
        min_mag (float): The maximum angle for rotation.
            Defaults to 0.0.
        max_mag (float): The maximum angle for rotation.
            Defaults to 30.0.
        reversal_prob (float): The probability that reverses the rotation
            magnitude. Should be in range [0,1]. Defaults to 0.5.
        img_border_value (int | float | tuple): The filled values for
            image border. If float, the same fill value will be used for
            all the three channels of image. If tuple, it should be 3 elements.
            Defaults to 128.
        mask_border_value (int): The fill value used for masks. Defaults to 0.
        seg_ignore_label (int): The fill value used for segmentation map.
            Note this value must equals ``ignore_label`` in ``semantic_head``
            of the corresponding config. Defaults to 255.
        interpolation (str): Interpolation method, accepted values are
            "nearest", "bilinear", "bicubic", "area", "lanczos" for 'cv2'
            backend, "nearest", "bilinear" for 'pillow' backend. Defaults
            to 'bilinear'.
    """

    def __init__(self,
                 prob: float = 1.0,
                 level: Optional[int] = None,
                 min_mag: float = 0.0,
                 max_mag: float = 30.0,
                 reversal_prob: float = 0.5,
                 img_border_value: Union[int, float, tuple] = 128,
                 mask_border_value: int = 0,
                 seg_ignore_label: int = 255,
                 interpolation: str = 'bilinear') -> None:
        assert 0. <= min_mag <= 180., \
            f'min_mag for Rotate should be in range [0,180], got {min_mag}.'
        assert 0. <= max_mag <= 180., \
            f'max_mag for Rotate should be in range [0,180], got {max_mag}.'
        super().__init__(
            prob=prob,
            level=level,
            min_mag=min_mag,
            max_mag=max_mag,
            reversal_prob=reversal_prob,
            img_border_value=img_border_value,
            mask_border_value=mask_border_value,
            seg_ignore_label=seg_ignore_label,
            interpolation=interpolation)

    def _get_homography_matrix(self, results: dict, mag: float) -> np.ndarray:
        """Get the homography matrix for Rotate."""
        img_shape = results['img_shape']
        center = ((img_shape[1] - 1) * 0.5, (img_shape[0] - 1) * 0.5)
        cv2_rotation_matrix = cv2.getRotationMatrix2D(center, -mag, 1.0)
        return np.concatenate(
            [cv2_rotation_matrix,
             np.array([0, 0, 1]).reshape((1, 3))]).astype(np.float32)

    def _transform_img(self, results: dict, mag: float) -> None:
        """Rotate the image."""
        results['img'] = mmcv.imrotate(
            results['img'],
            mag,
            border_value=self.img_border_value,
            interpolation=self.interpolation)

    def _transform_masks(self, results: dict, mag: float) -> None:
        """Rotate the masks."""
        results['gt_masks'] = results['gt_masks'].rotate(
            results['img_shape'],
            mag,
            border_value=self.mask_border_value,
            interpolation=self.interpolation)

    def _transform_seg(self, results: dict, mag: float) -> None:
        """Rotate the segmentation map."""
        results['gt_seg_map'] = mmcv.imrotate(
            results['gt_seg_map'],
            mag,
            border_value=self.seg_ignore_label,
            interpolation='nearest')


@TRANSFORMS.register_module()
class TranslateX(GeomTransform):
    """Translate the images, bboxes, masks and segmentation map horizontally.

    Required Keys:

    - img
    - gt_bboxes (BaseBoxes[torch.float32]) (optional)
    - gt_masks (BitmapMasks | PolygonMasks) (optional)
    - gt_seg_map (np.uint8) (optional)

    Modified Keys:

    - img
    - gt_bboxes
    - gt_masks
    - gt_seg_map

    Added Keys:

    - homography_matrix

    Args:
        prob (float): The probability for perform transformation and
            should be in range 0 to 1. Defaults to 1.0.
        level (int, optional): The level should be in range [0, _MAX_LEVEL].
            If level is None, it will generate from [0, _MAX_LEVEL] randomly.
            Defaults to None.
        min_mag (float): The minimum pixel's offset ratio for horizontal
            translation. Defaults to 0.0.
        max_mag (float): The maximum pixel's offset ratio for horizontal
            translation. Defaults to 0.1.
        reversal_prob (float): The probability that reverses the horizontal
            translation magnitude. Should be in range [0,1]. Defaults to 0.5.
        img_border_value (int | float | tuple): The filled values for
            image border. If float, the same fill value will be used for
            all the three channels of image. If tuple, it should be 3 elements.
            Defaults to 128.
        mask_border_value (int): The fill value used for masks. Defaults to 0.
        seg_ignore_label (int): The fill value used for segmentation map.
            Note this value must equals ``ignore_label`` in ``semantic_head``
            of the corresponding config. Defaults to 255.
        interpolation (str): Interpolation method, accepted values are
            "nearest", "bilinear", "bicubic", "area", "lanczos" for 'cv2'
            backend, "nearest", "bilinear" for 'pillow' backend. Defaults
            to 'bilinear'.
    """

    def __init__(self,
                 prob: float = 1.0,
                 level: Optional[int] = None,
                 min_mag: float = 0.0,
                 max_mag: float = 0.1,
                 reversal_prob: float = 0.5,
                 img_border_value: Union[int, float, tuple] = 128,
                 mask_border_value: int = 0,
                 seg_ignore_label: int = 255,
                 interpolation: str = 'bilinear') -> None:
        assert 0. <= min_mag <= 1., \
            f'min_mag ratio for TranslateX should be ' \
            f'in range [0, 1], got {min_mag}.'
        assert 0. <= max_mag <= 1., \
            f'max_mag ratio for TranslateX should be ' \
            f'in range [0, 1], got {max_mag}.'
        super().__init__(
            prob=prob,
            level=level,
            min_mag=min_mag,
            max_mag=max_mag,
            reversal_prob=reversal_prob,
            img_border_value=img_border_value,
            mask_border_value=mask_border_value,
            seg_ignore_label=seg_ignore_label,
            interpolation=interpolation)

    def _get_homography_matrix(self, results: dict, mag: float) -> np.ndarray:
        """Get the homography matrix for TranslateX."""
        mag = int(results['img_shape'][1] * mag)
        return np.array([[1, 0, mag], [0, 1, 0], [0, 0, 1]], dtype=np.float32)

    def _transform_img(self, results: dict, mag: float) -> None:
        """Translate the image horizontally."""
        mag = int(results['img_shape'][1] * mag)
        results['img'] = mmcv.imtranslate(
            results['img'],
            mag,
            direction='horizontal',
            border_value=self.img_border_value,
            interpolation=self.interpolation)

    def _transform_masks(self, results: dict, mag: float) -> None:
        """Translate the masks horizontally."""
        mag = int(results['img_shape'][1] * mag)
        results['gt_masks'] = results['gt_masks'].translate(
            results['img_shape'],
            mag,
            direction='horizontal',
            border_value=self.mask_border_value,
            interpolation=self.interpolation)

    def _transform_seg(self, results: dict, mag: float) -> None:
        """Translate the segmentation map horizontally."""
        mag = int(results['img_shape'][1] * mag)
        results['gt_seg_map'] = mmcv.imtranslate(
            results['gt_seg_map'],
            mag,
            direction='horizontal',
            border_value=self.seg_ignore_label,
            interpolation='nearest')


@TRANSFORMS.register_module()
class TranslateY(GeomTransform):
    """Translate the images, bboxes, masks and segmentation map vertically.

    Required Keys:

    - img
    - gt_bboxes (BaseBoxes[torch.float32]) (optional)
    - gt_masks (BitmapMasks | PolygonMasks) (optional)
    - gt_seg_map (np.uint8) (optional)

    Modified Keys:

    - img
    - gt_bboxes
    - gt_masks
    - gt_seg_map

    Added Keys:

    - homography_matrix

    Args:
        prob (float): The probability for perform transformation and
            should be in range 0 to 1. Defaults to 1.0.
        level (int, optional): The level should be in range [0, _MAX_LEVEL].
            If level is None, it will generate from [0, _MAX_LEVEL] randomly.
            Defaults to None.
        min_mag (float): The minimum pixel's offset ratio for vertical
            translation. Defaults to 0.0.
        max_mag (float): The maximum pixel's offset ratio for vertical
            translation. Defaults to 0.1.
        reversal_prob (float): The probability that reverses the vertical
            translation magnitude. Should be in range [0,1]. Defaults to 0.5.
        img_border_value (int | float | tuple): The filled values for
            image border. If float, the same fill value will be used for
            all the three channels of image. If tuple, it should be 3 elements.
            Defaults to 128.
        mask_border_value (int): The fill value used for masks. Defaults to 0.
        seg_ignore_label (int): The fill value used for segmentation map.
            Note this value must equals ``ignore_label`` in ``semantic_head``
            of the corresponding config. Defaults to 255.
        interpolation (str): Interpolation method, accepted values are
            "nearest", "bilinear", "bicubic", "area", "lanczos" for 'cv2'
            backend, "nearest", "bilinear" for 'pillow' backend. Defaults
            to 'bilinear'.
    """

    def __init__(self,
                 prob: float = 1.0,
                 level: Optional[int] = None,
                 min_mag: float = 0.0,
                 max_mag: float = 0.1,
                 reversal_prob: float = 0.5,
                 img_border_value: Union[int, float, tuple] = 128,
                 mask_border_value: int = 0,
                 seg_ignore_label: int = 255,
                 interpolation: str = 'bilinear') -> None:
        assert 0. <= min_mag <= 1., \
            f'min_mag ratio for TranslateY should be ' \
            f'in range [0,1], got {min_mag}.'
        assert 0. <= max_mag <= 1., \
            f'max_mag ratio for TranslateY should be ' \
            f'in range [0,1], got {max_mag}.'
        super().__init__(
            prob=prob,
            level=level,
            min_mag=min_mag,
            max_mag=max_mag,
            reversal_prob=reversal_prob,
            img_border_value=img_border_value,
            mask_border_value=mask_border_value,
            seg_ignore_label=seg_ignore_label,
            interpolation=interpolation)

    def _get_homography_matrix(self, results: dict, mag: float) -> np.ndarray:
        """Get the homography matrix for TranslateY."""
        mag = int(results['img_shape'][0] * mag)
        return np.array([[1, 0, 0], [0, 1, mag], [0, 0, 1]], dtype=np.float32)

    def _transform_img(self, results: dict, mag: float) -> None:
        """Translate the image vertically."""
        mag = int(results['img_shape'][0] * mag)
        results['img'] = mmcv.imtranslate(
            results['img'],
            mag,
            direction='vertical',
            border_value=self.img_border_value,
            interpolation=self.interpolation)

    def _transform_masks(self, results: dict, mag: float) -> None:
        """Translate masks vertically."""
        mag = int(results['img_shape'][0] * mag)
        results['gt_masks'] = results['gt_masks'].translate(
            results['img_shape'],
            mag,
            direction='vertical',
            border_value=self.mask_border_value,
            interpolation=self.interpolation)

    def _transform_seg(self, results: dict, mag: float) -> None:
        """Translate segmentation map vertically."""
        mag = int(results['img_shape'][0] * mag)
        results['gt_seg_map'] = mmcv.imtranslate(
            results['gt_seg_map'],
            mag,
            direction='vertical',
            border_value=self.seg_ignore_label,
            interpolation='nearest')