File size: 7,563 Bytes
3e06e1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
# Copyright (c) OpenMMLab. All rights reserved.
import torch
from mmcv.cnn import build_norm_layer
from mmcv.cnn.bricks.transformer import FFN
from torch import Tensor
from torch.nn import ModuleList

from .detr_layers import DetrTransformerDecoder, DetrTransformerDecoderLayer
from .utils import MLP, ConditionalAttention, coordinate_to_encoding


class ConditionalDetrTransformerDecoder(DetrTransformerDecoder):
    """Decoder of Conditional DETR."""

    def _init_layers(self) -> None:
        """Initialize decoder layers and other layers."""
        self.layers = ModuleList([
            ConditionalDetrTransformerDecoderLayer(**self.layer_cfg)
            for _ in range(self.num_layers)
        ])
        self.embed_dims = self.layers[0].embed_dims
        self.post_norm = build_norm_layer(self.post_norm_cfg,
                                          self.embed_dims)[1]
        # conditional detr affline
        self.query_scale = MLP(self.embed_dims, self.embed_dims,
                               self.embed_dims, 2)
        self.ref_point_head = MLP(self.embed_dims, self.embed_dims, 2, 2)
        # we have substitute 'qpos_proj' with 'qpos_sine_proj' except for
        # the first decoder layer), so 'qpos_proj' should be deleted
        # in other layers.
        for layer_id in range(self.num_layers - 1):
            self.layers[layer_id + 1].cross_attn.qpos_proj = None

    def forward(self,
                query: Tensor,
                key: Tensor = None,
                query_pos: Tensor = None,
                key_pos: Tensor = None,
                key_padding_mask: Tensor = None):
        """Forward function of decoder.

        Args:
            query (Tensor): The input query with shape
                (bs, num_queries, dim).
            key (Tensor): The input key with shape (bs, num_keys, dim) If
                `None`, the `query` will be used. Defaults to `None`.
            query_pos (Tensor): The positional encoding for `query`, with the
                same shape as `query`. If not `None`, it will be added to
                `query` before forward function. Defaults to `None`.
            key_pos (Tensor): The positional encoding for `key`, with the
                same shape as `key`. If not `None`, it will be added to
                `key` before forward function. If `None`, and `query_pos`
                has the same shape as `key`, then `query_pos` will be used
                as `key_pos`. Defaults to `None`.
            key_padding_mask (Tensor): ByteTensor with shape (bs, num_keys).
                Defaults to `None`.
        Returns:
            List[Tensor]: forwarded results with shape (num_decoder_layers,
            bs, num_queries, dim) if `return_intermediate` is True, otherwise
            with shape (1, bs, num_queries, dim). References with shape
            (bs, num_queries, 2).
        """
        reference_unsigmoid = self.ref_point_head(
            query_pos)  # [bs, num_queries, 2]
        reference = reference_unsigmoid.sigmoid()
        reference_xy = reference[..., :2]
        intermediate = []
        for layer_id, layer in enumerate(self.layers):
            if layer_id == 0:
                pos_transformation = 1
            else:
                pos_transformation = self.query_scale(query)
            # get sine embedding for the query reference
            ref_sine_embed = coordinate_to_encoding(coord_tensor=reference_xy)
            # apply transformation
            ref_sine_embed = ref_sine_embed * pos_transformation
            query = layer(
                query,
                key=key,
                query_pos=query_pos,
                key_pos=key_pos,
                key_padding_mask=key_padding_mask,
                ref_sine_embed=ref_sine_embed,
                is_first=(layer_id == 0))
            if self.return_intermediate:
                intermediate.append(self.post_norm(query))

        if self.return_intermediate:
            return torch.stack(intermediate), reference

        query = self.post_norm(query)
        return query.unsqueeze(0), reference


class ConditionalDetrTransformerDecoderLayer(DetrTransformerDecoderLayer):
    """Implements decoder layer in Conditional DETR transformer."""

    def _init_layers(self):
        """Initialize self-attention, cross-attention, FFN, and
        normalization."""
        self.self_attn = ConditionalAttention(**self.self_attn_cfg)
        self.cross_attn = ConditionalAttention(**self.cross_attn_cfg)
        self.embed_dims = self.self_attn.embed_dims
        self.ffn = FFN(**self.ffn_cfg)
        norms_list = [
            build_norm_layer(self.norm_cfg, self.embed_dims)[1]
            for _ in range(3)
        ]
        self.norms = ModuleList(norms_list)

    def forward(self,
                query: Tensor,
                key: Tensor = None,
                query_pos: Tensor = None,
                key_pos: Tensor = None,
                self_attn_masks: Tensor = None,
                cross_attn_masks: Tensor = None,
                key_padding_mask: Tensor = None,
                ref_sine_embed: Tensor = None,
                is_first: bool = False):
        """
        Args:
            query (Tensor): The input query, has shape (bs, num_queries, dim)
            key (Tensor, optional): The input key, has shape (bs, num_keys,
                dim). If `None`, the `query` will be used. Defaults to `None`.
            query_pos (Tensor, optional): The positional encoding for `query`,
                has the same shape as `query`. If not `None`, it will be
                added to `query` before forward function. Defaults to `None`.
            ref_sine_embed (Tensor): The positional encoding for query in
                cross attention, with the same shape as `x`. Defaults to None.
            key_pos (Tensor, optional): The positional encoding for `key`, has
                the same shape as `key`. If not None, it will be added to
                `key` before forward function. If None, and `query_pos` has
                the same shape as `key`, then `query_pos` will be used for
                `key_pos`. Defaults to None.
            self_attn_masks (Tensor, optional): ByteTensor mask, has shape
                (num_queries, num_keys), Same in `nn.MultiheadAttention.
                forward`. Defaults to None.
            cross_attn_masks (Tensor, optional): ByteTensor mask, has shape
                (num_queries, num_keys), Same in `nn.MultiheadAttention.
                forward`. Defaults to None.
            key_padding_mask (Tensor, optional): ByteTensor, has shape
                (bs, num_keys). Defaults to None.
            is_first (bool): A indicator to tell whether the current layer
                is the first layer of the decoder. Defaults to False.

        Returns:
            Tensor: Forwarded results, has shape (bs, num_queries, dim).
        """
        query = self.self_attn(
            query=query,
            key=query,
            query_pos=query_pos,
            key_pos=query_pos,
            attn_mask=self_attn_masks)
        query = self.norms[0](query)
        query = self.cross_attn(
            query=query,
            key=key,
            query_pos=query_pos,
            key_pos=key_pos,
            attn_mask=cross_attn_masks,
            key_padding_mask=key_padding_mask,
            ref_sine_embed=ref_sine_embed,
            is_first=is_first)
        query = self.norms[1](query)
        query = self.ffn(query)
        query = self.norms[2](query)

        return query