File size: 9,853 Bytes
3e06e1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Optional, Tuple

import torch
import torch.nn.functional as F
from mmengine.structures import InstanceData
from torch import Tensor

from mmdet.registry import TASK_UTILS
from mmdet.structures.bbox import BaseBoxes
from mmdet.utils import ConfigType
from .assign_result import AssignResult
from .base_assigner import BaseAssigner

INF = 100000000
EPS = 1.0e-7


def center_of_mass(masks: Tensor, eps: float = 1e-7) -> Tensor:
    """Compute the masks center of mass.

    Args:
        masks: Mask tensor, has shape (num_masks, H, W).
        eps: a small number to avoid normalizer to be zero.
            Defaults to 1e-7.
    Returns:
        Tensor: The masks center of mass. Has shape (num_masks, 2).
    """
    n, h, w = masks.shape
    grid_h = torch.arange(h, device=masks.device)[:, None]
    grid_w = torch.arange(w, device=masks.device)
    normalizer = masks.sum(dim=(1, 2)).float().clamp(min=eps)
    center_y = (masks * grid_h).sum(dim=(1, 2)) / normalizer
    center_x = (masks * grid_w).sum(dim=(1, 2)) / normalizer
    center = torch.cat([center_x[:, None], center_y[:, None]], dim=1)
    return center


@TASK_UTILS.register_module()
class DynamicSoftLabelAssigner(BaseAssigner):
    """Computes matching between predictions and ground truth with dynamic soft
    label assignment.

    Args:
        soft_center_radius (float): Radius of the soft center prior.
            Defaults to 3.0.
        topk (int): Select top-k predictions to calculate dynamic k
            best matches for each gt. Defaults to 13.
        iou_weight (float): The scale factor of iou cost. Defaults to 3.0.
        iou_calculator (ConfigType): Config of overlaps Calculator.
            Defaults to dict(type='BboxOverlaps2D').
    """

    def __init__(
        self,
        soft_center_radius: float = 3.0,
        topk: int = 13,
        iou_weight: float = 3.0,
        iou_calculator: ConfigType = dict(type='mmdet.BboxOverlaps2D')
    ) -> None:
        self.soft_center_radius = soft_center_radius
        self.topk = topk
        self.iou_weight = iou_weight
        self.iou_calculator = TASK_UTILS.build(iou_calculator)

    def assign(self,
               pred_instances: InstanceData,
               gt_instances: InstanceData,
               gt_instances_ignore: Optional[InstanceData] = None,
               **kwargs) -> AssignResult:
        """Assign gt to priors.

        Args:
            pred_instances (:obj:`InstanceData`): Instances of model
                predictions. It includes ``priors``, and the priors can
                be anchors or points, or the bboxes predicted by the
                previous stage, has shape (n, 4). The bboxes predicted by
                the current model or stage will be named ``bboxes``,
                ``labels``, and ``scores``, the same as the ``InstanceData``
                in other places.
            gt_instances (:obj:`InstanceData`): Ground truth of instance
                annotations. It usually includes ``bboxes``, with shape (k, 4),
                and ``labels``, with shape (k, ).
            gt_instances_ignore (:obj:`InstanceData`, optional): Instances
                to be ignored during training. It includes ``bboxes``
                attribute data that is ignored during training and testing.
                Defaults to None.
        Returns:
            obj:`AssignResult`: The assigned result.
        """
        gt_bboxes = gt_instances.bboxes
        gt_labels = gt_instances.labels
        num_gt = gt_bboxes.size(0)

        decoded_bboxes = pred_instances.bboxes
        pred_scores = pred_instances.scores
        priors = pred_instances.priors
        num_bboxes = decoded_bboxes.size(0)

        # assign 0 by default
        assigned_gt_inds = decoded_bboxes.new_full((num_bboxes, ),
                                                   0,
                                                   dtype=torch.long)
        if num_gt == 0 or num_bboxes == 0:
            # No ground truth or boxes, return empty assignment
            max_overlaps = decoded_bboxes.new_zeros((num_bboxes, ))
            if num_gt == 0:
                # No truth, assign everything to background
                assigned_gt_inds[:] = 0
            assigned_labels = decoded_bboxes.new_full((num_bboxes, ),
                                                      -1,
                                                      dtype=torch.long)
            return AssignResult(
                num_gt, assigned_gt_inds, max_overlaps, labels=assigned_labels)

        prior_center = priors[:, :2]
        if isinstance(gt_bboxes, BaseBoxes):
            is_in_gts = gt_bboxes.find_inside_points(prior_center)
        else:
            # Tensor boxes will be treated as horizontal boxes by defaults
            lt_ = prior_center[:, None] - gt_bboxes[:, :2]
            rb_ = gt_bboxes[:, 2:] - prior_center[:, None]

            deltas = torch.cat([lt_, rb_], dim=-1)
            is_in_gts = deltas.min(dim=-1).values > 0

        valid_mask = is_in_gts.sum(dim=1) > 0

        valid_decoded_bbox = decoded_bboxes[valid_mask]
        valid_pred_scores = pred_scores[valid_mask]
        num_valid = valid_decoded_bbox.size(0)

        if num_valid == 0:
            # No ground truth or boxes, return empty assignment
            max_overlaps = decoded_bboxes.new_zeros((num_bboxes, ))
            assigned_labels = decoded_bboxes.new_full((num_bboxes, ),
                                                      -1,
                                                      dtype=torch.long)
            return AssignResult(
                num_gt, assigned_gt_inds, max_overlaps, labels=assigned_labels)
        if hasattr(gt_instances, 'masks'):
            gt_center = center_of_mass(gt_instances.masks, eps=EPS)
        elif isinstance(gt_bboxes, BaseBoxes):
            gt_center = gt_bboxes.centers
        else:
            # Tensor boxes will be treated as horizontal boxes by defaults
            gt_center = (gt_bboxes[:, :2] + gt_bboxes[:, 2:]) / 2.0
        valid_prior = priors[valid_mask]
        strides = valid_prior[:, 2]
        distance = (valid_prior[:, None, :2] - gt_center[None, :, :]
                    ).pow(2).sum(-1).sqrt() / strides[:, None]
        soft_center_prior = torch.pow(10, distance - self.soft_center_radius)

        pairwise_ious = self.iou_calculator(valid_decoded_bbox, gt_bboxes)
        iou_cost = -torch.log(pairwise_ious + EPS) * self.iou_weight

        gt_onehot_label = (
            F.one_hot(gt_labels.to(torch.int64),
                      pred_scores.shape[-1]).float().unsqueeze(0).repeat(
                          num_valid, 1, 1))
        valid_pred_scores = valid_pred_scores.unsqueeze(1).repeat(1, num_gt, 1)

        soft_label = gt_onehot_label * pairwise_ious[..., None]
        scale_factor = soft_label - valid_pred_scores.sigmoid()
        soft_cls_cost = F.binary_cross_entropy_with_logits(
            valid_pred_scores, soft_label,
            reduction='none') * scale_factor.abs().pow(2.0)
        soft_cls_cost = soft_cls_cost.sum(dim=-1)

        cost_matrix = soft_cls_cost + iou_cost + soft_center_prior

        matched_pred_ious, matched_gt_inds = self.dynamic_k_matching(
            cost_matrix, pairwise_ious, num_gt, valid_mask)

        # convert to AssignResult format
        assigned_gt_inds[valid_mask] = matched_gt_inds + 1
        assigned_labels = assigned_gt_inds.new_full((num_bboxes, ), -1)
        assigned_labels[valid_mask] = gt_labels[matched_gt_inds].long()
        max_overlaps = assigned_gt_inds.new_full((num_bboxes, ),
                                                 -INF,
                                                 dtype=torch.float32)
        max_overlaps[valid_mask] = matched_pred_ious
        return AssignResult(
            num_gt, assigned_gt_inds, max_overlaps, labels=assigned_labels)

    def dynamic_k_matching(self, cost: Tensor, pairwise_ious: Tensor,
                           num_gt: int,
                           valid_mask: Tensor) -> Tuple[Tensor, Tensor]:
        """Use IoU and matching cost to calculate the dynamic top-k positive
        targets. Same as SimOTA.

        Args:
            cost (Tensor): Cost matrix.
            pairwise_ious (Tensor): Pairwise iou matrix.
            num_gt (int): Number of gt.
            valid_mask (Tensor): Mask for valid bboxes.

        Returns:
            tuple: matched ious and gt indexes.
        """
        matching_matrix = torch.zeros_like(cost, dtype=torch.uint8)
        # select candidate topk ious for dynamic-k calculation
        candidate_topk = min(self.topk, pairwise_ious.size(0))
        topk_ious, _ = torch.topk(pairwise_ious, candidate_topk, dim=0)
        # calculate dynamic k for each gt
        dynamic_ks = torch.clamp(topk_ious.sum(0).int(), min=1)
        for gt_idx in range(num_gt):
            _, pos_idx = torch.topk(
                cost[:, gt_idx], k=dynamic_ks[gt_idx], largest=False)
            matching_matrix[:, gt_idx][pos_idx] = 1

        del topk_ious, dynamic_ks, pos_idx

        prior_match_gt_mask = matching_matrix.sum(1) > 1
        if prior_match_gt_mask.sum() > 0:
            cost_min, cost_argmin = torch.min(
                cost[prior_match_gt_mask, :], dim=1)
            matching_matrix[prior_match_gt_mask, :] *= 0
            matching_matrix[prior_match_gt_mask, cost_argmin] = 1
        # get foreground mask inside box and center prior
        fg_mask_inboxes = matching_matrix.sum(1) > 0
        valid_mask[valid_mask.clone()] = fg_mask_inboxes

        matched_gt_inds = matching_matrix[fg_mask_inboxes, :].argmax(1)
        matched_pred_ious = (matching_matrix *
                             pairwise_ious).sum(1)[fg_mask_inboxes]
        return matched_pred_ious, matched_gt_inds