Spaces:
Runtime error
Runtime error
File size: 17,421 Bytes
3e06e1c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 |
# Copyright (c) OpenMMLab. All rights reserved.
import warnings
from typing import Optional, Sequence, Union
import numpy as np
import torch
from torch import Tensor
from mmdet.registry import TASK_UTILS
from mmdet.structures.bbox import BaseBoxes, HorizontalBoxes, get_box_tensor
from .base_bbox_coder import BaseBBoxCoder
@TASK_UTILS.register_module()
class DeltaXYWHBBoxCoder(BaseBBoxCoder):
"""Delta XYWH BBox coder.
Following the practice in `R-CNN <https://arxiv.org/abs/1311.2524>`_,
this coder encodes bbox (x1, y1, x2, y2) into delta (dx, dy, dw, dh) and
decodes delta (dx, dy, dw, dh) back to original bbox (x1, y1, x2, y2).
Args:
target_means (Sequence[float]): Denormalizing means of target for
delta coordinates
target_stds (Sequence[float]): Denormalizing standard deviation of
target for delta coordinates
clip_border (bool, optional): Whether clip the objects outside the
border of the image. Defaults to True.
add_ctr_clamp (bool): Whether to add center clamp, when added, the
predicted box is clamped is its center is too far away from
the original anchor's center. Only used by YOLOF. Default False.
ctr_clamp (int): the maximum pixel shift to clamp. Only used by YOLOF.
Default 32.
"""
def __init__(self,
target_means: Sequence[float] = (0., 0., 0., 0.),
target_stds: Sequence[float] = (1., 1., 1., 1.),
clip_border: bool = True,
add_ctr_clamp: bool = False,
ctr_clamp: int = 32,
**kwargs) -> None:
super().__init__(**kwargs)
self.means = target_means
self.stds = target_stds
self.clip_border = clip_border
self.add_ctr_clamp = add_ctr_clamp
self.ctr_clamp = ctr_clamp
def encode(self, bboxes: Union[Tensor, BaseBoxes],
gt_bboxes: Union[Tensor, BaseBoxes]) -> Tensor:
"""Get box regression transformation deltas that can be used to
transform the ``bboxes`` into the ``gt_bboxes``.
Args:
bboxes (torch.Tensor or :obj:`BaseBoxes`): Source boxes,
e.g., object proposals.
gt_bboxes (torch.Tensor or :obj:`BaseBoxes`): Target of the
transformation, e.g., ground-truth boxes.
Returns:
torch.Tensor: Box transformation deltas
"""
bboxes = get_box_tensor(bboxes)
gt_bboxes = get_box_tensor(gt_bboxes)
assert bboxes.size(0) == gt_bboxes.size(0)
assert bboxes.size(-1) == gt_bboxes.size(-1) == 4
encoded_bboxes = bbox2delta(bboxes, gt_bboxes, self.means, self.stds)
return encoded_bboxes
def decode(
self,
bboxes: Union[Tensor, BaseBoxes],
pred_bboxes: Tensor,
max_shape: Optional[Union[Sequence[int], Tensor,
Sequence[Sequence[int]]]] = None,
wh_ratio_clip: Optional[float] = 16 / 1000
) -> Union[Tensor, BaseBoxes]:
"""Apply transformation `pred_bboxes` to `boxes`.
Args:
bboxes (torch.Tensor or :obj:`BaseBoxes`): Basic boxes. Shape
(B, N, 4) or (N, 4)
pred_bboxes (Tensor): Encoded offsets with respect to each roi.
Has shape (B, N, num_classes * 4) or (B, N, 4) or
(N, num_classes * 4) or (N, 4). Note N = num_anchors * W * H
when rois is a grid of anchors.Offset encoding follows [1]_.
max_shape (Sequence[int] or torch.Tensor or Sequence[
Sequence[int]],optional): Maximum bounds for boxes, specifies
(H, W, C) or (H, W). If bboxes shape is (B, N, 4), then
the max_shape should be a Sequence[Sequence[int]]
and the length of max_shape should also be B.
wh_ratio_clip (float, optional): The allowed ratio between
width and height.
Returns:
Union[torch.Tensor, :obj:`BaseBoxes`]: Decoded boxes.
"""
bboxes = get_box_tensor(bboxes)
assert pred_bboxes.size(0) == bboxes.size(0)
if pred_bboxes.ndim == 3:
assert pred_bboxes.size(1) == bboxes.size(1)
if pred_bboxes.ndim == 2 and not torch.onnx.is_in_onnx_export():
# single image decode
decoded_bboxes = delta2bbox(bboxes, pred_bboxes, self.means,
self.stds, max_shape, wh_ratio_clip,
self.clip_border, self.add_ctr_clamp,
self.ctr_clamp)
else:
if pred_bboxes.ndim == 3 and not torch.onnx.is_in_onnx_export():
warnings.warn(
'DeprecationWarning: onnx_delta2bbox is deprecated '
'in the case of batch decoding and non-ONNX, '
'please use “delta2bbox” instead. In order to improve '
'the decoding speed, the batch function will no '
'longer be supported. ')
decoded_bboxes = onnx_delta2bbox(bboxes, pred_bboxes, self.means,
self.stds, max_shape,
wh_ratio_clip, self.clip_border,
self.add_ctr_clamp,
self.ctr_clamp)
if self.use_box_type:
assert decoded_bboxes.size(-1) == 4, \
('Cannot warp decoded boxes with box type when decoded boxes'
'have shape of (N, num_classes * 4)')
decoded_bboxes = HorizontalBoxes(decoded_bboxes)
return decoded_bboxes
def bbox2delta(
proposals: Tensor,
gt: Tensor,
means: Sequence[float] = (0., 0., 0., 0.),
stds: Sequence[float] = (1., 1., 1., 1.)
) -> Tensor:
"""Compute deltas of proposals w.r.t. gt.
We usually compute the deltas of x, y, w, h of proposals w.r.t ground
truth bboxes to get regression target.
This is the inverse function of :func:`delta2bbox`.
Args:
proposals (Tensor): Boxes to be transformed, shape (N, ..., 4)
gt (Tensor): Gt bboxes to be used as base, shape (N, ..., 4)
means (Sequence[float]): Denormalizing means for delta coordinates
stds (Sequence[float]): Denormalizing standard deviation for delta
coordinates
Returns:
Tensor: deltas with shape (N, 4), where columns represent dx, dy,
dw, dh.
"""
assert proposals.size() == gt.size()
proposals = proposals.float()
gt = gt.float()
px = (proposals[..., 0] + proposals[..., 2]) * 0.5
py = (proposals[..., 1] + proposals[..., 3]) * 0.5
pw = proposals[..., 2] - proposals[..., 0]
ph = proposals[..., 3] - proposals[..., 1]
gx = (gt[..., 0] + gt[..., 2]) * 0.5
gy = (gt[..., 1] + gt[..., 3]) * 0.5
gw = gt[..., 2] - gt[..., 0]
gh = gt[..., 3] - gt[..., 1]
dx = (gx - px) / pw
dy = (gy - py) / ph
dw = torch.log(gw / pw)
dh = torch.log(gh / ph)
deltas = torch.stack([dx, dy, dw, dh], dim=-1)
means = deltas.new_tensor(means).unsqueeze(0)
stds = deltas.new_tensor(stds).unsqueeze(0)
deltas = deltas.sub_(means).div_(stds)
return deltas
def delta2bbox(rois: Tensor,
deltas: Tensor,
means: Sequence[float] = (0., 0., 0., 0.),
stds: Sequence[float] = (1., 1., 1., 1.),
max_shape: Optional[Union[Sequence[int], Tensor,
Sequence[Sequence[int]]]] = None,
wh_ratio_clip: float = 16 / 1000,
clip_border: bool = True,
add_ctr_clamp: bool = False,
ctr_clamp: int = 32) -> Tensor:
"""Apply deltas to shift/scale base boxes.
Typically the rois are anchor or proposed bounding boxes and the deltas are
network outputs used to shift/scale those boxes.
This is the inverse function of :func:`bbox2delta`.
Args:
rois (Tensor): Boxes to be transformed. Has shape (N, 4).
deltas (Tensor): Encoded offsets relative to each roi.
Has shape (N, num_classes * 4) or (N, 4). Note
N = num_base_anchors * W * H, when rois is a grid of
anchors. Offset encoding follows [1]_.
means (Sequence[float]): Denormalizing means for delta coordinates.
Default (0., 0., 0., 0.).
stds (Sequence[float]): Denormalizing standard deviation for delta
coordinates. Default (1., 1., 1., 1.).
max_shape (tuple[int, int]): Maximum bounds for boxes, specifies
(H, W). Default None.
wh_ratio_clip (float): Maximum aspect ratio for boxes. Default
16 / 1000.
clip_border (bool, optional): Whether clip the objects outside the
border of the image. Default True.
add_ctr_clamp (bool): Whether to add center clamp. When set to True,
the center of the prediction bounding box will be clamped to
avoid being too far away from the center of the anchor.
Only used by YOLOF. Default False.
ctr_clamp (int): the maximum pixel shift to clamp. Only used by YOLOF.
Default 32.
Returns:
Tensor: Boxes with shape (N, num_classes * 4) or (N, 4), where 4
represent tl_x, tl_y, br_x, br_y.
References:
.. [1] https://arxiv.org/abs/1311.2524
Example:
>>> rois = torch.Tensor([[ 0., 0., 1., 1.],
>>> [ 0., 0., 1., 1.],
>>> [ 0., 0., 1., 1.],
>>> [ 5., 5., 5., 5.]])
>>> deltas = torch.Tensor([[ 0., 0., 0., 0.],
>>> [ 1., 1., 1., 1.],
>>> [ 0., 0., 2., -1.],
>>> [ 0.7, -1.9, -0.5, 0.3]])
>>> delta2bbox(rois, deltas, max_shape=(32, 32, 3))
tensor([[0.0000, 0.0000, 1.0000, 1.0000],
[0.1409, 0.1409, 2.8591, 2.8591],
[0.0000, 0.3161, 4.1945, 0.6839],
[5.0000, 5.0000, 5.0000, 5.0000]])
"""
num_bboxes, num_classes = deltas.size(0), deltas.size(1) // 4
if num_bboxes == 0:
return deltas
deltas = deltas.reshape(-1, 4)
means = deltas.new_tensor(means).view(1, -1)
stds = deltas.new_tensor(stds).view(1, -1)
denorm_deltas = deltas * stds + means
dxy = denorm_deltas[:, :2]
dwh = denorm_deltas[:, 2:]
# Compute width/height of each roi
rois_ = rois.repeat(1, num_classes).reshape(-1, 4)
pxy = ((rois_[:, :2] + rois_[:, 2:]) * 0.5)
pwh = (rois_[:, 2:] - rois_[:, :2])
dxy_wh = pwh * dxy
max_ratio = np.abs(np.log(wh_ratio_clip))
if add_ctr_clamp:
dxy_wh = torch.clamp(dxy_wh, max=ctr_clamp, min=-ctr_clamp)
dwh = torch.clamp(dwh, max=max_ratio)
else:
dwh = dwh.clamp(min=-max_ratio, max=max_ratio)
gxy = pxy + dxy_wh
gwh = pwh * dwh.exp()
x1y1 = gxy - (gwh * 0.5)
x2y2 = gxy + (gwh * 0.5)
bboxes = torch.cat([x1y1, x2y2], dim=-1)
if clip_border and max_shape is not None:
bboxes[..., 0::2].clamp_(min=0, max=max_shape[1])
bboxes[..., 1::2].clamp_(min=0, max=max_shape[0])
bboxes = bboxes.reshape(num_bboxes, -1)
return bboxes
def onnx_delta2bbox(rois: Tensor,
deltas: Tensor,
means: Sequence[float] = (0., 0., 0., 0.),
stds: Sequence[float] = (1., 1., 1., 1.),
max_shape: Optional[Union[Sequence[int], Tensor,
Sequence[Sequence[int]]]] = None,
wh_ratio_clip: float = 16 / 1000,
clip_border: Optional[bool] = True,
add_ctr_clamp: bool = False,
ctr_clamp: int = 32) -> Tensor:
"""Apply deltas to shift/scale base boxes.
Typically the rois are anchor or proposed bounding boxes and the deltas are
network outputs used to shift/scale those boxes.
This is the inverse function of :func:`bbox2delta`.
Args:
rois (Tensor): Boxes to be transformed. Has shape (N, 4) or (B, N, 4)
deltas (Tensor): Encoded offsets with respect to each roi.
Has shape (B, N, num_classes * 4) or (B, N, 4) or
(N, num_classes * 4) or (N, 4). Note N = num_anchors * W * H
when rois is a grid of anchors.Offset encoding follows [1]_.
means (Sequence[float]): Denormalizing means for delta coordinates.
Default (0., 0., 0., 0.).
stds (Sequence[float]): Denormalizing standard deviation for delta
coordinates. Default (1., 1., 1., 1.).
max_shape (Sequence[int] or torch.Tensor or Sequence[
Sequence[int]],optional): Maximum bounds for boxes, specifies
(H, W, C) or (H, W). If rois shape is (B, N, 4), then
the max_shape should be a Sequence[Sequence[int]]
and the length of max_shape should also be B. Default None.
wh_ratio_clip (float): Maximum aspect ratio for boxes.
Default 16 / 1000.
clip_border (bool, optional): Whether clip the objects outside the
border of the image. Default True.
add_ctr_clamp (bool): Whether to add center clamp, when added, the
predicted box is clamped is its center is too far away from
the original anchor's center. Only used by YOLOF. Default False.
ctr_clamp (int): the maximum pixel shift to clamp. Only used by YOLOF.
Default 32.
Returns:
Tensor: Boxes with shape (B, N, num_classes * 4) or (B, N, 4) or
(N, num_classes * 4) or (N, 4), where 4 represent
tl_x, tl_y, br_x, br_y.
References:
.. [1] https://arxiv.org/abs/1311.2524
Example:
>>> rois = torch.Tensor([[ 0., 0., 1., 1.],
>>> [ 0., 0., 1., 1.],
>>> [ 0., 0., 1., 1.],
>>> [ 5., 5., 5., 5.]])
>>> deltas = torch.Tensor([[ 0., 0., 0., 0.],
>>> [ 1., 1., 1., 1.],
>>> [ 0., 0., 2., -1.],
>>> [ 0.7, -1.9, -0.5, 0.3]])
>>> delta2bbox(rois, deltas, max_shape=(32, 32, 3))
tensor([[0.0000, 0.0000, 1.0000, 1.0000],
[0.1409, 0.1409, 2.8591, 2.8591],
[0.0000, 0.3161, 4.1945, 0.6839],
[5.0000, 5.0000, 5.0000, 5.0000]])
"""
means = deltas.new_tensor(means).view(1,
-1).repeat(1,
deltas.size(-1) // 4)
stds = deltas.new_tensor(stds).view(1, -1).repeat(1, deltas.size(-1) // 4)
denorm_deltas = deltas * stds + means
dx = denorm_deltas[..., 0::4]
dy = denorm_deltas[..., 1::4]
dw = denorm_deltas[..., 2::4]
dh = denorm_deltas[..., 3::4]
x1, y1 = rois[..., 0], rois[..., 1]
x2, y2 = rois[..., 2], rois[..., 3]
# Compute center of each roi
px = ((x1 + x2) * 0.5).unsqueeze(-1).expand_as(dx)
py = ((y1 + y2) * 0.5).unsqueeze(-1).expand_as(dy)
# Compute width/height of each roi
pw = (x2 - x1).unsqueeze(-1).expand_as(dw)
ph = (y2 - y1).unsqueeze(-1).expand_as(dh)
dx_width = pw * dx
dy_height = ph * dy
max_ratio = np.abs(np.log(wh_ratio_clip))
if add_ctr_clamp:
dx_width = torch.clamp(dx_width, max=ctr_clamp, min=-ctr_clamp)
dy_height = torch.clamp(dy_height, max=ctr_clamp, min=-ctr_clamp)
dw = torch.clamp(dw, max=max_ratio)
dh = torch.clamp(dh, max=max_ratio)
else:
dw = dw.clamp(min=-max_ratio, max=max_ratio)
dh = dh.clamp(min=-max_ratio, max=max_ratio)
# Use exp(network energy) to enlarge/shrink each roi
gw = pw * dw.exp()
gh = ph * dh.exp()
# Use network energy to shift the center of each roi
gx = px + dx_width
gy = py + dy_height
# Convert center-xy/width/height to top-left, bottom-right
x1 = gx - gw * 0.5
y1 = gy - gh * 0.5
x2 = gx + gw * 0.5
y2 = gy + gh * 0.5
bboxes = torch.stack([x1, y1, x2, y2], dim=-1).view(deltas.size())
if clip_border and max_shape is not None:
# clip bboxes with dynamic `min` and `max` for onnx
if torch.onnx.is_in_onnx_export():
from mmdet.core.export import dynamic_clip_for_onnx
x1, y1, x2, y2 = dynamic_clip_for_onnx(x1, y1, x2, y2, max_shape)
bboxes = torch.stack([x1, y1, x2, y2], dim=-1).view(deltas.size())
return bboxes
if not isinstance(max_shape, torch.Tensor):
max_shape = x1.new_tensor(max_shape)
max_shape = max_shape[..., :2].type_as(x1)
if max_shape.ndim == 2:
assert bboxes.ndim == 3
assert max_shape.size(0) == bboxes.size(0)
min_xy = x1.new_tensor(0)
max_xy = torch.cat(
[max_shape] * (deltas.size(-1) // 2),
dim=-1).flip(-1).unsqueeze(-2)
bboxes = torch.where(bboxes < min_xy, min_xy, bboxes)
bboxes = torch.where(bboxes > max_xy, max_xy, bboxes)
return bboxes
|