Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
from typing import List, Optional, Sequence, Tuple, Union | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from mmcv.cnn import ConvModule, DepthwiseSeparableConvModule | |
from mmdet.models.task_modules.samplers import PseudoSampler | |
from mmdet.models.utils import multi_apply | |
from mmdet.structures.bbox import bbox_xyxy_to_cxcywh | |
from mmdet.utils import (ConfigType, OptConfigType, OptInstanceList, | |
OptMultiConfig, reduce_mean) | |
from mmengine.model import BaseModule, bias_init_with_prob | |
from mmengine.structures import InstanceData | |
from torch import Tensor | |
from mmyolo.registry import MODELS, TASK_UTILS | |
from .yolov5_head import YOLOv5Head | |
class YOLOXHeadModule(BaseModule): | |
"""YOLOXHead head module used in `YOLOX. | |
`<https://arxiv.org/abs/2107.08430>`_ | |
Args: | |
num_classes (int): Number of categories excluding the background | |
category. | |
in_channels (Union[int, Sequence]): Number of channels in the input | |
feature map. | |
widen_factor (float): Width multiplier, multiply number of | |
channels in each layer by this amount. Defaults to 1.0. | |
num_base_priors (int): The number of priors (points) at a point | |
on the feature grid | |
stacked_convs (int): Number of stacking convs of the head. | |
Defaults to 2. | |
featmap_strides (Sequence[int]): Downsample factor of each feature map. | |
Defaults to [8, 16, 32]. | |
use_depthwise (bool): Whether to depthwise separable convolution in | |
blocks. Defaults to False. | |
dcn_on_last_conv (bool): If true, use dcn in the last layer of | |
towers. Defaults to False. | |
conv_bias (bool or str): If specified as `auto`, it will be decided by | |
the norm_cfg. Bias of conv will be set as True if `norm_cfg` is | |
None, otherwise False. Defaults to "auto". | |
conv_cfg (:obj:`ConfigDict` or dict, optional): Config dict for | |
convolution layer. Defaults to None. | |
norm_cfg (:obj:`ConfigDict` or dict): Config dict for normalization | |
layer. Defaults to dict(type='BN', momentum=0.03, eps=0.001). | |
act_cfg (:obj:`ConfigDict` or dict): Config dict for activation layer. | |
Defaults to None. | |
init_cfg (:obj:`ConfigDict` or list[:obj:`ConfigDict`] or dict or | |
list[dict], optional): Initialization config dict. | |
Defaults to None. | |
""" | |
def __init__( | |
self, | |
num_classes: int, | |
in_channels: Union[int, Sequence], | |
widen_factor: float = 1.0, | |
num_base_priors: int = 1, | |
feat_channels: int = 256, | |
stacked_convs: int = 2, | |
featmap_strides: Sequence[int] = [8, 16, 32], | |
use_depthwise: bool = False, | |
dcn_on_last_conv: bool = False, | |
conv_bias: Union[bool, str] = 'auto', | |
conv_cfg: OptConfigType = None, | |
norm_cfg: ConfigType = dict(type='BN', momentum=0.03, eps=0.001), | |
act_cfg: ConfigType = dict(type='SiLU', inplace=True), | |
init_cfg: OptMultiConfig = None, | |
): | |
super().__init__(init_cfg=init_cfg) | |
self.num_classes = num_classes | |
self.feat_channels = int(feat_channels * widen_factor) | |
self.stacked_convs = stacked_convs | |
self.use_depthwise = use_depthwise | |
self.dcn_on_last_conv = dcn_on_last_conv | |
assert conv_bias == 'auto' or isinstance(conv_bias, bool) | |
self.conv_bias = conv_bias | |
self.num_base_priors = num_base_priors | |
self.conv_cfg = conv_cfg | |
self.norm_cfg = norm_cfg | |
self.act_cfg = act_cfg | |
self.featmap_strides = featmap_strides | |
if isinstance(in_channels, int): | |
in_channels = int(in_channels * widen_factor) | |
self.in_channels = in_channels | |
self._init_layers() | |
def _init_layers(self): | |
"""Initialize heads for all level feature maps.""" | |
self.multi_level_cls_convs = nn.ModuleList() | |
self.multi_level_reg_convs = nn.ModuleList() | |
self.multi_level_conv_cls = nn.ModuleList() | |
self.multi_level_conv_reg = nn.ModuleList() | |
self.multi_level_conv_obj = nn.ModuleList() | |
for _ in self.featmap_strides: | |
self.multi_level_cls_convs.append(self._build_stacked_convs()) | |
self.multi_level_reg_convs.append(self._build_stacked_convs()) | |
conv_cls, conv_reg, conv_obj = self._build_predictor() | |
self.multi_level_conv_cls.append(conv_cls) | |
self.multi_level_conv_reg.append(conv_reg) | |
self.multi_level_conv_obj.append(conv_obj) | |
def _build_stacked_convs(self) -> nn.Sequential: | |
"""Initialize conv layers of a single level head.""" | |
conv = DepthwiseSeparableConvModule \ | |
if self.use_depthwise else ConvModule | |
stacked_convs = [] | |
for i in range(self.stacked_convs): | |
chn = self.in_channels if i == 0 else self.feat_channels | |
if self.dcn_on_last_conv and i == self.stacked_convs - 1: | |
conv_cfg = dict(type='DCNv2') | |
else: | |
conv_cfg = self.conv_cfg | |
stacked_convs.append( | |
conv( | |
chn, | |
self.feat_channels, | |
3, | |
stride=1, | |
padding=1, | |
conv_cfg=conv_cfg, | |
norm_cfg=self.norm_cfg, | |
act_cfg=self.act_cfg, | |
bias=self.conv_bias)) | |
return nn.Sequential(*stacked_convs) | |
def _build_predictor(self) -> Tuple[nn.Module, nn.Module, nn.Module]: | |
"""Initialize predictor layers of a single level head.""" | |
conv_cls = nn.Conv2d(self.feat_channels, self.num_classes, 1) | |
conv_reg = nn.Conv2d(self.feat_channels, 4, 1) | |
conv_obj = nn.Conv2d(self.feat_channels, 1, 1) | |
return conv_cls, conv_reg, conv_obj | |
def init_weights(self): | |
"""Initialize weights of the head.""" | |
# Use prior in model initialization to improve stability | |
super().init_weights() | |
bias_init = bias_init_with_prob(0.01) | |
for conv_cls, conv_obj in zip(self.multi_level_conv_cls, | |
self.multi_level_conv_obj): | |
conv_cls.bias.data.fill_(bias_init) | |
conv_obj.bias.data.fill_(bias_init) | |
def forward(self, x: Tuple[Tensor]) -> Tuple[List]: | |
"""Forward features from the upstream network. | |
Args: | |
x (Tuple[Tensor]): Features from the upstream network, each is | |
a 4D-tensor. | |
Returns: | |
Tuple[List]: A tuple of multi-level classification scores, bbox | |
predictions, and objectnesses. | |
""" | |
return multi_apply(self.forward_single, x, self.multi_level_cls_convs, | |
self.multi_level_reg_convs, | |
self.multi_level_conv_cls, | |
self.multi_level_conv_reg, | |
self.multi_level_conv_obj) | |
def forward_single(self, x: Tensor, cls_convs: nn.Module, | |
reg_convs: nn.Module, conv_cls: nn.Module, | |
conv_reg: nn.Module, | |
conv_obj: nn.Module) -> Tuple[Tensor, Tensor, Tensor]: | |
"""Forward feature of a single scale level.""" | |
cls_feat = cls_convs(x) | |
reg_feat = reg_convs(x) | |
cls_score = conv_cls(cls_feat) | |
bbox_pred = conv_reg(reg_feat) | |
objectness = conv_obj(reg_feat) | |
return cls_score, bbox_pred, objectness | |
class YOLOXHead(YOLOv5Head): | |
"""YOLOXHead head used in `YOLOX <https://arxiv.org/abs/2107.08430>`_. | |
Args: | |
head_module(ConfigType): Base module used for YOLOXHead | |
prior_generator: Points generator feature maps in | |
2D points-based detectors. | |
loss_cls (:obj:`ConfigDict` or dict): Config of classification loss. | |
loss_bbox (:obj:`ConfigDict` or dict): Config of localization loss. | |
loss_obj (:obj:`ConfigDict` or dict): Config of objectness loss. | |
loss_bbox_aux (:obj:`ConfigDict` or dict): Config of bbox aux loss. | |
train_cfg (:obj:`ConfigDict` or dict, optional): Training config of | |
anchor head. Defaults to None. | |
test_cfg (:obj:`ConfigDict` or dict, optional): Testing config of | |
anchor head. Defaults to None. | |
init_cfg (:obj:`ConfigDict` or list[:obj:`ConfigDict`] or dict or | |
list[dict], optional): Initialization config dict. | |
Defaults to None. | |
""" | |
def __init__(self, | |
head_module: ConfigType, | |
prior_generator: ConfigType = dict( | |
type='mmdet.MlvlPointGenerator', | |
offset=0, | |
strides=[8, 16, 32]), | |
bbox_coder: ConfigType = dict(type='YOLOXBBoxCoder'), | |
loss_cls: ConfigType = dict( | |
type='mmdet.CrossEntropyLoss', | |
use_sigmoid=True, | |
reduction='sum', | |
loss_weight=1.0), | |
loss_bbox: ConfigType = dict( | |
type='mmdet.IoULoss', | |
mode='square', | |
eps=1e-16, | |
reduction='sum', | |
loss_weight=5.0), | |
loss_obj: ConfigType = dict( | |
type='mmdet.CrossEntropyLoss', | |
use_sigmoid=True, | |
reduction='sum', | |
loss_weight=1.0), | |
loss_bbox_aux: ConfigType = dict( | |
type='mmdet.L1Loss', reduction='sum', loss_weight=1.0), | |
train_cfg: OptConfigType = None, | |
test_cfg: OptConfigType = None, | |
init_cfg: OptMultiConfig = None): | |
self.use_bbox_aux = False | |
self.loss_bbox_aux = loss_bbox_aux | |
super().__init__( | |
head_module=head_module, | |
prior_generator=prior_generator, | |
bbox_coder=bbox_coder, | |
loss_cls=loss_cls, | |
loss_bbox=loss_bbox, | |
loss_obj=loss_obj, | |
train_cfg=train_cfg, | |
test_cfg=test_cfg, | |
init_cfg=init_cfg) | |
def special_init(self): | |
"""Since YOLO series algorithms will inherit from YOLOv5Head, but | |
different algorithms have special initialization process. | |
The special_init function is designed to deal with this situation. | |
""" | |
self.loss_bbox_aux: nn.Module = MODELS.build(self.loss_bbox_aux) | |
if self.train_cfg: | |
self.assigner = TASK_UTILS.build(self.train_cfg.assigner) | |
# YOLOX does not support sampling | |
self.sampler = PseudoSampler() | |
def forward(self, x: Tuple[Tensor]) -> Tuple[List]: | |
return self.head_module(x) | |
def loss_by_feat( | |
self, | |
cls_scores: Sequence[Tensor], | |
bbox_preds: Sequence[Tensor], | |
objectnesses: Sequence[Tensor], | |
batch_gt_instances: Tensor, | |
batch_img_metas: Sequence[dict], | |
batch_gt_instances_ignore: OptInstanceList = None) -> dict: | |
"""Calculate the loss based on the features extracted by the detection | |
head. | |
Args: | |
cls_scores (Sequence[Tensor]): Box scores for each scale level, | |
each is a 4D-tensor, the channel number is | |
num_priors * num_classes. | |
bbox_preds (Sequence[Tensor]): Box energies / deltas for each scale | |
level, each is a 4D-tensor, the channel number is | |
num_priors * 4. | |
objectnesses (Sequence[Tensor]): Score factor for | |
all scale level, each is a 4D-tensor, has shape | |
(batch_size, 1, H, W). | |
batch_gt_instances (list[:obj:`InstanceData`]): Batch of | |
gt_instance. It usually includes ``bboxes`` and ``labels`` | |
attributes. | |
batch_img_metas (list[dict]): Meta information of each image, e.g., | |
image size, scaling factor, etc. | |
batch_gt_instances_ignore (list[:obj:`InstanceData`], optional): | |
Batch of gt_instances_ignore. It includes ``bboxes`` attribute | |
data that is ignored during training and testing. | |
Defaults to None. | |
Returns: | |
dict[str, Tensor]: A dictionary of losses. | |
""" | |
num_imgs = len(batch_img_metas) | |
if batch_gt_instances_ignore is None: | |
batch_gt_instances_ignore = [None] * num_imgs | |
batch_gt_instances = self.gt_instances_preprocess( | |
batch_gt_instances, len(batch_img_metas)) | |
featmap_sizes = [cls_score.shape[2:] for cls_score in cls_scores] | |
mlvl_priors = self.prior_generator.grid_priors( | |
featmap_sizes, | |
dtype=cls_scores[0].dtype, | |
device=cls_scores[0].device, | |
with_stride=True) | |
flatten_cls_preds = [ | |
cls_pred.permute(0, 2, 3, 1).reshape(num_imgs, -1, | |
self.num_classes) | |
for cls_pred in cls_scores | |
] | |
flatten_bbox_preds = [ | |
bbox_pred.permute(0, 2, 3, 1).reshape(num_imgs, -1, 4) | |
for bbox_pred in bbox_preds | |
] | |
flatten_objectness = [ | |
objectness.permute(0, 2, 3, 1).reshape(num_imgs, -1) | |
for objectness in objectnesses | |
] | |
flatten_cls_preds = torch.cat(flatten_cls_preds, dim=1) | |
flatten_bbox_preds = torch.cat(flatten_bbox_preds, dim=1) | |
flatten_objectness = torch.cat(flatten_objectness, dim=1) | |
flatten_priors = torch.cat(mlvl_priors) | |
flatten_bboxes = self.bbox_coder.decode(flatten_priors[..., :2], | |
flatten_bbox_preds, | |
flatten_priors[..., 2]) | |
(pos_masks, cls_targets, obj_targets, bbox_targets, bbox_aux_target, | |
num_fg_imgs) = multi_apply( | |
self._get_targets_single, | |
flatten_priors.unsqueeze(0).repeat(num_imgs, 1, 1), | |
flatten_cls_preds.detach(), flatten_bboxes.detach(), | |
flatten_objectness.detach(), batch_gt_instances, batch_img_metas, | |
batch_gt_instances_ignore) | |
# The experimental results show that 'reduce_mean' can improve | |
# performance on the COCO dataset. | |
num_pos = torch.tensor( | |
sum(num_fg_imgs), | |
dtype=torch.float, | |
device=flatten_cls_preds.device) | |
num_total_samples = max(reduce_mean(num_pos), 1.0) | |
pos_masks = torch.cat(pos_masks, 0) | |
cls_targets = torch.cat(cls_targets, 0) | |
obj_targets = torch.cat(obj_targets, 0) | |
bbox_targets = torch.cat(bbox_targets, 0) | |
if self.use_bbox_aux: | |
bbox_aux_target = torch.cat(bbox_aux_target, 0) | |
loss_obj = self.loss_obj(flatten_objectness.view(-1, 1), | |
obj_targets) / num_total_samples | |
if num_pos > 0: | |
loss_cls = self.loss_cls( | |
flatten_cls_preds.view(-1, self.num_classes)[pos_masks], | |
cls_targets) / num_total_samples | |
loss_bbox = self.loss_bbox( | |
flatten_bboxes.view(-1, 4)[pos_masks], | |
bbox_targets) / num_total_samples | |
else: | |
# Avoid cls and reg branch not participating in the gradient | |
# propagation when there is no ground-truth in the images. | |
# For more details, please refer to | |
# https://github.com/open-mmlab/mmdetection/issues/7298 | |
loss_cls = flatten_cls_preds.sum() * 0 | |
loss_bbox = flatten_bboxes.sum() * 0 | |
loss_dict = dict( | |
loss_cls=loss_cls, loss_bbox=loss_bbox, loss_obj=loss_obj) | |
if self.use_bbox_aux: | |
if num_pos > 0: | |
loss_bbox_aux = self.loss_bbox_aux( | |
flatten_bbox_preds.view(-1, 4)[pos_masks], | |
bbox_aux_target) / num_total_samples | |
else: | |
# Avoid cls and reg branch not participating in the gradient | |
# propagation when there is no ground-truth in the images. | |
# For more details, please refer to | |
# https://github.com/open-mmlab/mmdetection/issues/7298 | |
loss_bbox_aux = flatten_bbox_preds.sum() * 0 | |
loss_dict.update(loss_bbox_aux=loss_bbox_aux) | |
return loss_dict | |
def _get_targets_single( | |
self, | |
priors: Tensor, | |
cls_preds: Tensor, | |
decoded_bboxes: Tensor, | |
objectness: Tensor, | |
gt_instances: InstanceData, | |
img_meta: dict, | |
gt_instances_ignore: Optional[InstanceData] = None) -> tuple: | |
"""Compute classification, regression, and objectness targets for | |
priors in a single image. | |
Args: | |
priors (Tensor): All priors of one image, a 2D-Tensor with shape | |
[num_priors, 4] in [cx, xy, stride_w, stride_y] format. | |
cls_preds (Tensor): Classification predictions of one image, | |
a 2D-Tensor with shape [num_priors, num_classes] | |
decoded_bboxes (Tensor): Decoded bboxes predictions of one image, | |
a 2D-Tensor with shape [num_priors, 4] in [tl_x, tl_y, | |
br_x, br_y] format. | |
objectness (Tensor): Objectness predictions of one image, | |
a 1D-Tensor with shape [num_priors] | |
gt_instances (:obj:`InstanceData`): Ground truth of instance | |
annotations. It should includes ``bboxes`` and ``labels`` | |
attributes. | |
img_meta (dict): Meta information for current image. | |
gt_instances_ignore (:obj:`InstanceData`, optional): Instances | |
to be ignored during training. It includes ``bboxes`` attribute | |
data that is ignored during training and testing. | |
Defaults to None. | |
Returns: | |
tuple: | |
foreground_mask (list[Tensor]): Binary mask of foreground | |
targets. | |
cls_target (list[Tensor]): Classification targets of an image. | |
obj_target (list[Tensor]): Objectness targets of an image. | |
bbox_target (list[Tensor]): BBox targets of an image. | |
bbox_aux_target (int): BBox aux targets of an image. | |
num_pos_per_img (int): Number of positive samples in an image. | |
""" | |
num_priors = priors.size(0) | |
num_gts = len(gt_instances) | |
# No target | |
if num_gts == 0: | |
cls_target = cls_preds.new_zeros((0, self.num_classes)) | |
bbox_target = cls_preds.new_zeros((0, 4)) | |
bbox_aux_target = cls_preds.new_zeros((0, 4)) | |
obj_target = cls_preds.new_zeros((num_priors, 1)) | |
foreground_mask = cls_preds.new_zeros(num_priors).bool() | |
return (foreground_mask, cls_target, obj_target, bbox_target, | |
bbox_aux_target, 0) | |
# YOLOX uses center priors with 0.5 offset to assign targets, | |
# but use center priors without offset to regress bboxes. | |
offset_priors = torch.cat( | |
[priors[:, :2] + priors[:, 2:] * 0.5, priors[:, 2:]], dim=-1) | |
scores = cls_preds.sigmoid() * objectness.unsqueeze(1).sigmoid() | |
pred_instances = InstanceData( | |
bboxes=decoded_bboxes, scores=scores.sqrt_(), priors=offset_priors) | |
assign_result = self.assigner.assign( | |
pred_instances=pred_instances, | |
gt_instances=gt_instances, | |
gt_instances_ignore=gt_instances_ignore) | |
sampling_result = self.sampler.sample(assign_result, pred_instances, | |
gt_instances) | |
pos_inds = sampling_result.pos_inds | |
num_pos_per_img = pos_inds.size(0) | |
pos_ious = assign_result.max_overlaps[pos_inds] | |
# IOU aware classification score | |
cls_target = F.one_hot(sampling_result.pos_gt_labels, | |
self.num_classes) * pos_ious.unsqueeze(-1) | |
obj_target = torch.zeros_like(objectness).unsqueeze(-1) | |
obj_target[pos_inds] = 1 | |
bbox_target = sampling_result.pos_gt_bboxes | |
bbox_aux_target = cls_preds.new_zeros((num_pos_per_img, 4)) | |
if self.use_bbox_aux: | |
bbox_aux_target = self._get_bbox_aux_target( | |
bbox_aux_target, bbox_target, priors[pos_inds]) | |
foreground_mask = torch.zeros_like(objectness).to(torch.bool) | |
foreground_mask[pos_inds] = 1 | |
return (foreground_mask, cls_target, obj_target, bbox_target, | |
bbox_aux_target, num_pos_per_img) | |
def _get_bbox_aux_target(self, | |
bbox_aux_target: Tensor, | |
gt_bboxes: Tensor, | |
priors: Tensor, | |
eps: float = 1e-8) -> Tensor: | |
"""Convert gt bboxes to center offset and log width height.""" | |
gt_cxcywh = bbox_xyxy_to_cxcywh(gt_bboxes) | |
bbox_aux_target[:, :2] = (gt_cxcywh[:, :2] - | |
priors[:, :2]) / priors[:, 2:] | |
bbox_aux_target[:, | |
2:] = torch.log(gt_cxcywh[:, 2:] / priors[:, 2:] + eps) | |
return bbox_aux_target | |
def gt_instances_preprocess(batch_gt_instances: Tensor, | |
batch_size: int) -> List[InstanceData]: | |
"""Split batch_gt_instances with batch size. | |
Args: | |
batch_gt_instances (Tensor): Ground truth | |
a 2D-Tensor for whole batch, shape [all_gt_bboxes, 6] | |
batch_size (int): Batch size. | |
Returns: | |
List: batch gt instances data, shape [batch_size, InstanceData] | |
""" | |
# faster version | |
batch_instance_list = [] | |
for i in range(batch_size): | |
batch_gt_instance_ = InstanceData() | |
single_batch_instance = \ | |
batch_gt_instances[batch_gt_instances[:, 0] == i, :] | |
batch_gt_instance_.bboxes = single_batch_instance[:, 2:] | |
batch_gt_instance_.labels = single_batch_instance[:, 1] | |
batch_instance_list.append(batch_gt_instance_) | |
return batch_instance_list | |