import gradio as gr import pandas as pd from apscheduler.schedulers.background import BackgroundScheduler from huggingface_hub import snapshot_download import os os.environ['CURL_CA_BUNDLE'] = '' from src.display.about import ( EVALUATION_QUEUE_TEXT, INTRODUCTION_TEXT, LLM_BENCHMARKS_TEXT, LLM_DATASET_TEXT, TITLE, ) from src.display.css_html_js import custom_css from src.display.utils import ( BENCHMARK_COLS, COLS, EVAL_COLS, EVAL_TYPES, TYPES, AutoEvalColumn, fields, BENCHMARK_COLS_GROUP, COLS_GROUP, EVAL_COLS_GROUP, EVAL_TYPES_GROUP, TYPES_GROUP, AutoEvalColumnGroup, ) from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, TOKEN, QUEUE_REPO, REPO_ID, RESULTS_REPO, EVAL_RESULTS_GROUP_PATH, RESULTS_GROUP_REPO from src.populate import get_evaluation_queue_df, get_leaderboard_df, get_evaluation_queue_df_group, get_leaderboard_group_df from src.submission.submit import add_new_eval def restart_space(): API.restart_space(repo_id=REPO_ID, token=TOKEN) try: print(EVAL_REQUESTS_PATH) snapshot_download( repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, force_download=True, token=TOKEN ) except Exception: restart_space() try: print(EVAL_RESULTS_PATH) snapshot_download( repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, force_download=True, token=TOKEN ) snapshot_download( repo_id=RESULTS_GROUP_REPO, local_dir=EVAL_RESULTS_GROUP_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, force_download=True, token=TOKEN) except Exception: restart_space() raw_data, original_df = get_leaderboard_df(EVAL_RESULTS_PATH, COLS, BENCHMARK_COLS) raw_data_grouped, original_df_grouped = get_leaderboard_group_df(EVAL_RESULTS_GROUP_PATH, COLS_GROUP, BENCHMARK_COLS_GROUP) leaderboard_grouped_df = original_df_grouped.copy() leaderboard_df = original_df.copy() ( finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df, ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS) ( finished_eval_queue_g_df, running_eval_queue_g_df, pending_eval_queue_g_df, ) = get_evaluation_queue_df_group(EVAL_REQUESTS_PATH, EVAL_COLS_GROUP) # Searching and filtering def update_table( hidden_df: pd.DataFrame, columns: list, query: str, ): filtered_df = filter_queries(query, hidden_df) df = select_columns(filtered_df, columns) return df def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame: return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))] def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame: always_here_cols = [ AutoEvalColumn.model_submission_date.name, AutoEvalColumn.model.name, ] # We use COLS to maintain sorting filtered_df = df[ always_here_cols + [c for c in COLS if c in df.columns and c in columns] + [AutoEvalColumn.dummy.name] ] return filtered_df def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame: final_df = [] if query != "": queries = [q.strip() for q in query.split(";")] for _q in queries: if _q != "": temp_filtered_df = search_table(filtered_df, _q) if len(temp_filtered_df) > 0: final_df.append(temp_filtered_df) if len(final_df) > 0: filtered_df = pd.concat(final_df) filtered_df = filtered_df.drop_duplicates( subset=[AutoEvalColumn.model.name, AutoEvalColumn.model_submission_date.name] ) return filtered_df demo = gr.Blocks(css=custom_css) with demo: gr.HTML(TITLE) with gr.Row(): with gr.Column(scale=9): gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") with gr.Column(scale=2, min_width=1): gr.Image('src/display/BirLLama.jpeg', scale=2, show_label=False, interactive=False, show_share_button=False, show_download_button=False) with gr.Tabs(elem_classes="tab-buttons") as tabs: with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0): with gr.Row(): with gr.Row(): search_bar = gr.Textbox( placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...", show_label=False, elem_id="search-bar", ) with gr.Row(): shown_columns = gr.CheckboxGroup( choices=[ c.name for c in fields(AutoEvalColumnGroup) if not c.hidden and not c.never_hidden and not c.dummy ], value=[ c.name for c in fields(AutoEvalColumnGroup) if c.displayed_by_default and not c.hidden and not c.never_hidden ], label="Select columns to show", elem_id="column-select", interactive=True, ) leaderboard_table = gr.components.Dataframe( value=leaderboard_grouped_df[ [c.name for c in fields(AutoEvalColumnGroup) if c.never_hidden] + shown_columns.value + [AutoEvalColumnGroup.dummy.name] ], headers=[c.name for c in fields(AutoEvalColumnGroup) if c.never_hidden] + shown_columns.value + [AutoEvalColumnGroup.dummy.name], datatype=TYPES_GROUP, elem_id="leaderboard-table", interactive=False, visible=True, column_widths=["15%", "30%"] ) # Dummy leaderboard for handling the case when the user uses backspace key hidden_leaderboard_table_for_search = gr.components.Dataframe( value=original_df_grouped[COLS_GROUP], headers=COLS_GROUP, datatype=TYPES_GROUP, visible=False, ) search_bar.submit( update_table, [ hidden_leaderboard_table_for_search, shown_columns, search_bar, ], leaderboard_table, ) for selector in [shown_columns]: selector.change( update_table, [ hidden_leaderboard_table_for_search, shown_columns, search_bar, ], leaderboard_table, queue=True, ) with gr.TabItem("🏅 LLM Benchmark FineGrained", elem_id="llm-benchmark-tab-table-1", id=1): with gr.Row(): with gr.Row(): search_bar = gr.Textbox( placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...", show_label=False, elem_id="search-bar", ) with gr.Row(): shown_columns = gr.CheckboxGroup( choices=[ c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and not c.dummy ], value=[ c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden and not c.never_hidden ], label="Select columns to show", elem_id="column-select", interactive=True, ) leaderboard_table = gr.components.Dataframe( value=leaderboard_df[ [c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value + [AutoEvalColumn.dummy.name] ], headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value + [AutoEvalColumn.dummy.name], datatype=TYPES, elem_id="leaderboard-table", interactive=False, visible=True, column_widths=["15%", "30%"] ) # Dummy leaderboard for handling the case when the user uses backspace key hidden_leaderboard_table_for_search = gr.components.Dataframe( value=original_df[COLS], headers=COLS, datatype=TYPES, visible=False, ) search_bar.submit( update_table, [ hidden_leaderboard_table_for_search, shown_columns, search_bar, ], leaderboard_table, ) for selector in [shown_columns]: selector.change( update_table, [ hidden_leaderboard_table_for_search, shown_columns, search_bar, ], leaderboard_table, queue=True, ) with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=2): with gr.Column(): with gr.Row(): gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text") with gr.Column(): with gr.Accordion( f"✅ Finished Evaluations ({len(finished_eval_queue_df)})", open=False, ): with gr.Row(): finished_eval_table = gr.components.Dataframe( value=finished_eval_queue_df, headers=EVAL_COLS, datatype=EVAL_TYPES, row_count=5, ) with gr.Accordion( f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})", open=False, ): with gr.Row(): running_eval_table = gr.components.Dataframe( value=running_eval_queue_df, headers=EVAL_COLS, datatype=EVAL_TYPES, row_count=5, ) with gr.Accordion( f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})", open=False, ): with gr.Row(): pending_eval_table = gr.components.Dataframe( value=pending_eval_queue_df, headers=EVAL_COLS, datatype=EVAL_TYPES, row_count=5, ) with gr.Row(): gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text") with gr.Row(): with gr.Column(): with gr.Row(): model_name_textbox = gr.Textbox(label="Model name") with gr.Column(): with gr.Row(): weight_type = gr.Dropdown( choices=['safetensors', 'gguf'], label="Weights type", multiselect=False, value='safgit petensors', interactive=True, ) with gr.Column(): with gr.Row(): gguf_filename_textbox = gr.Textbox(label="GGUF filename") submit_button = gr.Button("Submit Eval") submission_result = gr.Markdown() submit_button.click( add_new_eval, [ model_name_textbox, weight_type, gguf_filename_textbox ], submission_result, ) with gr.TabItem("📝 Evaluation Datasets", elem_id="llm-benchmark-tab-table", id=4): gr.Markdown(LLM_DATASET_TEXT, elem_classes="markdown-text") gr.HTML("""