Spaces:
Paused
Paused
File size: 26,090 Bytes
d3653d5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 |
import json
import webcolors
import spaces
import gradio as gr
import os.path as osp
from PIL import Image, ImageDraw, ImageFont
import torch
from diffusers import UNet2DConditionModel, AutoencoderKL
from diffusers.models.attention import BasicTransformerBlock
from peft import LoraConfig
from peft.utils import set_peft_model_state_dict
from transformers import PretrainedConfig
from diffusers import DPMSolverMultistepScheduler
from glyph_sdxl.utils import (
parse_config,
UNET_CKPT_NAME,
huggingface_cache_dir,
load_byt5_and_byt5_tokenizer,
BYT5_MAPPER_CKPT_NAME,
INSERTED_ATTN_CKPT_NAME,
BYT5_CKPT_NAME,
PromptFormat,
)
from glyph_sdxl.custom_diffusers import (
StableDiffusionGlyphXLPipeline,
CrossAttnInsertBasicTransformerBlock,
)
from glyph_sdxl.modules import T5EncoderBlockByT5Mapper
byt5_mapper_dict = [T5EncoderBlockByT5Mapper]
byt5_mapper_dict = {mapper.__name__: mapper for mapper in byt5_mapper_dict}
from demo.constants import MAX_TEXT_BOX
html = f"""<h1>Glyph-ByT5: A Customized Text Encoder for Accurate Visual Text Rendering</h1>
<h2><a href='https://glyph-byt5.github.io/'>Project Page</a> | <a href='https://arxiv.org/abs/2403.09622'>arXiv Paper</a> | <a href=''>Github</a> | <a href=''>Cite our work</a> if our ideas inspire you.</h2>
<p><b>Try some examples at the bottom of the page to get started!</b></p>
<p><b>Usage:</b></p>
<p>1. <b>Select bounding boxes</b> on the canvas on the left <b>by clicking twice</b>. </p>
<p>2. Click "Redo" if you want to cancel last point, "Undo" for clearing the canvas. </p>
<p>3. <b>Click "I've finished my layout!"</b> to start choosing specific prompts, colors and font-types. </p>
<p>4. Enter a <b>design prompt</b> for the background image. Optionally, you can choose to specify the design categories and tags (separated by a comma). </p>
<p>5. For each text box, <b>enter the text prompts in the text box</b> on the left, and <b>select colors and font-types from the drop boxes</b> on the right. </p>
<p>6. <b>Click on "I've finished my texts, colors and styles, generate!"</b> to start generating!. </p>
<style>.btn {{flex-grow: unset !important;}} </p>
"""
css = '''
#color-bg{display:flex;justify-content: center;align-items: center;}
.color-bg-item{width: 100%; height: 32px}
#main_button{width:100%}
<style>
'''
state = 0
stack = []
font = ImageFont.truetype("assets/Arial.ttf", 20)
device = "cuda"
def import_model_class_from_model_name_or_path(
pretrained_model_name_or_path: str, revision: str, subfolder: str = "text_encoder",
):
text_encoder_config = PretrainedConfig.from_pretrained(
pretrained_model_name_or_path,
subfolder=subfolder,
revision=revision,
)
model_class = text_encoder_config.architectures[0]
if model_class == "CLIPTextModel":
from transformers import CLIPTextModel
return CLIPTextModel
elif model_class == "CLIPTextModelWithProjection":
from transformers import CLIPTextModelWithProjection
return CLIPTextModelWithProjection
else:
raise ValueError(f"{model_class} is not supported.")
config = parse_config('configs/glyph_sdxl_albedo.py')
ckpt_dir = 'checkpoints/glyph-sdxl'
text_encoder_cls_one = import_model_class_from_model_name_or_path(
config.pretrained_model_name_or_path, config.revision,
)
text_encoder_cls_two = import_model_class_from_model_name_or_path(
config.pretrained_model_name_or_path, config.revision, subfolder="text_encoder_2",
)
text_encoder_one = text_encoder_cls_one.from_pretrained(
config.pretrained_model_name_or_path, subfolder="text_encoder", revision=config.revision,
cache_dir=huggingface_cache_dir,
)
text_encoder_two = text_encoder_cls_two.from_pretrained(
config.pretrained_model_name_or_path, subfolder="text_encoder_2", revision=config.revision,
cache_dir=huggingface_cache_dir,
)
unet = UNet2DConditionModel.from_pretrained(
config.pretrained_model_name_or_path,
subfolder="unet",
revision=config.revision,
cache_dir=huggingface_cache_dir,
)
vae_path = (
config.pretrained_model_name_or_path
if config.pretrained_vae_model_name_or_path is None
else config.pretrained_vae_model_name_or_path
)
vae = AutoencoderKL.from_pretrained(
vae_path, subfolder="vae" if config.pretrained_vae_model_name_or_path is None else None,
revision=config.revision,
cache_dir=huggingface_cache_dir,
)
byt5_model, byt5_tokenizer = load_byt5_and_byt5_tokenizer(
**config.byt5_config,
huggingface_cache_dir=huggingface_cache_dir,
)
inference_dtype = torch.float32
if config.inference_dtype == "fp16":
inference_dtype = torch.float16
elif config.inference_dtype == "bf16":
inference_dtype = torch.bfloat16
inserted_new_modules_para_set = set()
for name, module in unet.named_modules():
if isinstance(module, BasicTransformerBlock) and name in config.attn_block_to_modify:
parent_module = unet
for n in name.split(".")[:-1]:
parent_module = getattr(parent_module, n)
new_block = CrossAttnInsertBasicTransformerBlock.from_transformer_block(
module,
byt5_model.config.d_model if config.byt5_mapper_config.sdxl_channels is None else config.byt5_mapper_config.sdxl_channels,
)
new_block.requires_grad_(False)
for inserted_module_name, inserted_module in zip(
new_block.get_inserted_modules_names(),
new_block.get_inserted_modules()
):
inserted_module.requires_grad_(True)
for para_name, para in inserted_module.named_parameters():
para_key = name + '.' + inserted_module_name + '.' + para_name
assert para_key not in inserted_new_modules_para_set
inserted_new_modules_para_set.add(para_key)
for origin_module in new_block.get_origin_modules():
origin_module.to(dtype=inference_dtype)
parent_module.register_module(name.split(".")[-1], new_block)
print(f"inserted cross attn block to {name}")
byt5_mapper = byt5_mapper_dict[config.byt5_mapper_type](
byt5_model.config,
**config.byt5_mapper_config,
)
unet_lora_target_modules = [
"attn1.to_k", "attn1.to_q", "attn1.to_v", "attn1.to_out.0",
"attn2.to_k", "attn2.to_q", "attn2.to_v", "attn2.to_out.0",
]
unet_lora_config = LoraConfig(
r=config.unet_lora_rank,
lora_alpha=config.unet_lora_rank,
init_lora_weights="gaussian",
target_modules=unet_lora_target_modules,
)
unet.add_adapter(unet_lora_config)
unet_lora_layers_para = torch.load(osp.join(ckpt_dir, UNET_CKPT_NAME), map_location='cpu')
incompatible_keys = set_peft_model_state_dict(unet, unet_lora_layers_para, adapter_name="default")
if getattr(incompatible_keys, 'unexpected_keys', []) == []:
print(f"loaded unet_lora_layers_para")
else:
print(f"unet_lora_layers has unexpected_keys: {getattr(incompatible_keys, 'unexpected_keys', None)}")
inserted_attn_module_paras = torch.load(osp.join(ckpt_dir, INSERTED_ATTN_CKPT_NAME), map_location='cpu')
missing_keys, unexpected_keys = unet.load_state_dict(inserted_attn_module_paras, strict=False)
assert len(unexpected_keys) == 0, unexpected_keys
byt5_mapper_para = torch.load(osp.join(ckpt_dir, BYT5_MAPPER_CKPT_NAME), map_location='cpu')
byt5_mapper.load_state_dict(byt5_mapper_para)
byt5_model_para = torch.load(osp.join(ckpt_dir, BYT5_CKPT_NAME), map_location='cpu')
byt5_model.load_state_dict(byt5_model_para)
pipeline = StableDiffusionGlyphXLPipeline.from_pretrained(
config.pretrained_model_name_or_path,
vae=vae,
text_encoder=text_encoder_one,
text_encoder_2=text_encoder_two,
byt5_text_encoder=byt5_model,
byt5_tokenizer=byt5_tokenizer,
byt5_mapper=byt5_mapper,
unet=unet,
byt5_max_length=config.byt5_max_length,
revision=config.revision,
torch_dtype=inference_dtype,
safety_checker=None,
cache_dir=huggingface_cache_dir,
)
pipeline.scheduler = DPMSolverMultistepScheduler.from_pretrained(
config.pretrained_model_name_or_path,
subfolder="scheduler",
use_karras_sigmas=True,
)
prompt_format = PromptFormat()
def get_pixels(
box_sketch_template,
evt: gr.SelectData
):
global state
global stack
text_position = evt.index
if state == 0:
stack.append(text_position)
state = 1
else:
x, y = stack.pop()
stack.append([x, y, text_position[0], text_position[1]])
state = 0
print(stack)
box_sketch_template = Image.new('RGB', (1024, 1024), (255, 255, 255))
draw = ImageDraw.Draw(box_sketch_template)
for i, text_position in enumerate(stack):
if len(text_position) == 2:
x, y = text_position
r = 4
leftUpPoint = (x-r, y-r)
rightDownPoint = (x+r, y+r)
text_color = (255, 0, 0)
draw.text((x+2, y), str(i + 1), font=font, fill=text_color)
draw.ellipse((leftUpPoint,rightDownPoint), fill='red')
elif len(text_position) == 4:
x0, y0, x1, y1 = text_position
x0, x1 = min(x0, x1), max(x0, x1)
y0, y1 = min(y0, y1), max(y0, y1)
r = 4
leftUpPoint = (x0-r, y0-r)
rightDownPoint = (x0+r, y0+r)
text_color = (255, 0, 0)
draw.text((x0+2, y0), str(i + 1), font=font, fill=text_color)
draw.rectangle((x0, y0, x1, y1), outline=(255, 0, 0))
return box_sketch_template
def exe_redo(
box_sketch_template
):
global state
global stack
state = 1 - state
if len(stack[-1]) == 2:
stack = stack[:-1]
else:
x, y, _, _ = stack[-1]
stack = stack[:-1] + [[x, y]]
box_sketch_template = Image.new('RGB', (1024, 1024), (255, 255, 255))
draw = ImageDraw.Draw(box_sketch_template)
for i, text_position in enumerate(stack):
if len(text_position) == 2:
x, y = text_position
r = 4
leftUpPoint = (x-r, y-r)
rightDownPoint = (x+r, y+r)
text_color = (255, 0, 0)
draw.text((x+2, y), str(i+1), font=font, fill=text_color)
draw.ellipse((leftUpPoint, rightDownPoint), fill='red')
elif len(text_position) == 4:
x0, y0, x1, y1 = text_position
x0, x1 = min(x0, x1), max(x0, x1)
y0, y1 = min(y0, y1), max(y0, y1)
r = 4
leftUpPoint = (x0-r, y0-r)
rightDownPoint = (x0+r, y0+r)
text_color = (255, 0, 0)
draw.text((x0+2, y0), str(i+1), font=font, fill=text_color)
draw.rectangle((x0,y0,x1,y1), outline=(255, 0, 0))
return box_sketch_template
def exe_undo(
box_sketch_template
):
global state
global stack
state = 0
stack = []
box_sketch_template = Image.new('RGB', (1024, 1024), (255, 255, 255))
return box_sketch_template
def process_box():
global stack
global state
visibilities = []
for _ in range(MAX_TEXT_BOX + 1):
visibilities.append(gr.update(visible=False))
for n in range(len(stack) + 1):
visibilities[n] = gr.update(visible=True)
# return [gr.update(visible=True), binary_matrixes, *visibilities, *colors]
return [gr.update(visible=True), *visibilities]
@spaces.GPU
def generate_image(bg_prompt, bg_class, bg_tags, seed, *conditions):
print(conditions)
# 0 load model to cuda
global pipeline
if config.pretrained_vae_model_name_or_path is None:
vae.to(device, dtype=torch.float32)
else:
vae.to(device, dtype=inference_dtype)
text_encoder_one.to(device, dtype=inference_dtype)
text_encoder_two.to(device, dtype=inference_dtype)
byt5_model.to(device)
unet.to(device, dtype=inference_dtype)
pipeline = pipeline.to(device)
# 1. parse input
global state
global stack
prompts = []
colors = []
font_type = []
bboxes = []
num_boxes = len(stack) if len(stack[-1]) == 4 else len(stack) - 1
for i in range(num_boxes):
prompts.append(conditions[i])
colors.append(conditions[i + MAX_TEXT_BOX])
font_type.append(conditions[i + MAX_TEXT_BOX * 2])
# 2. input check
styles = []
if bg_prompt == "" or bg_prompt is None:
raise gr.Error("Empty background prompt!")
for i, (prompt, color, style) in enumerate(zip(prompts, colors, font_type)):
if prompt == "" or prompt is None:
raise gr.Error(f"Invalid prompt for text box {i + 1} !")
if color is None:
raise gr.Error(f"Invalid color for text box {i + 1} !")
if style is None:
raise gr.Error(f"Invalid style for text box {i + 1} !")
bboxes.append(
[
stack[i][0] / 1024,
stack[i][1] / 1024,
(stack[i][2] - stack[i][0]) / 1024,
(stack[i][3] - stack[i][1]) / 1024,
]
)
styles.append(
{
'color': webcolors.name_to_hex(color),
'font-family': style,
}
)
# 3. format input
if bg_class != "" and bg_class is not None:
bg_prompt = bg_class + ". " + bg_prompt
if bg_tags != "" and bg_tags is not None:
bg_prompt += " Tags: " + bg_tags
text_prompt = prompt_format.format_prompt(prompts, styles)
print(bg_prompt)
print(text_prompt)
# 4. inference
if seed == -1:
generator = torch.Generator(device=device)
else:
generator = torch.Generator(device=device).manual_seed(seed)
with torch.cuda.amp.autocast():
image = pipeline(
prompt=bg_prompt,
text_prompt=text_prompt,
texts=prompts,
bboxes=bboxes,
num_inference_steps=50,
generator=generator,
text_attn_mask=None,
).images[0]
return image
def process_example(bg_prompt, bg_class, bg_tags, color_str, style_str, text_str, box_str, seed):
global stack
global state
colors = color_str.split(",")
styles = style_str.split(",")
boxes = box_str.split(";")
prompts = text_str.split("**********")
colors = [color.strip() for color in colors]
styles = [style.strip() for style in styles]
colors += [None] * (MAX_TEXT_BOX - len(colors))
styles += [None] * (MAX_TEXT_BOX - len(styles))
prompts += [""] * (MAX_TEXT_BOX - len(prompts))
state = 0
stack = []
print(boxes)
for box in boxes:
print(box)
box = box.strip()[1:-1]
print(box)
box = box.split(",")
print(box)
x = eval(box[0].strip()) * 1024
y = eval(box[1].strip()) * 1024
w = eval(box[2].strip()) * 1024
h = eval(box[3].strip()) * 1024
stack.append([int(x), int(y), int(x + w + 0.5), int(y + h + 0.5)])
visibilities = []
for _ in range(MAX_TEXT_BOX + 1):
visibilities.append(gr.update(visible=False))
for n in range(len(stack) + 1):
visibilities[n] = gr.update(visible=True)
box_sketch_template = Image.new('RGB', (1024, 1024), (255, 255, 255))
draw = ImageDraw.Draw(box_sketch_template)
for i, text_position in enumerate(stack):
if len(text_position) == 2:
x, y = text_position
r = 4
leftUpPoint = (x-r, y-r)
rightDownPoint = (x+r, y+r)
text_color = (255, 0, 0)
draw.text((x+2, y), str(i + 1), font=font, fill=text_color)
draw.ellipse((leftUpPoint,rightDownPoint), fill='red')
elif len(text_position) == 4:
x0, y0, x1, y1 = text_position
x0, x1 = min(x0, x1), max(x0, x1)
y0, y1 = min(y0, y1), max(y0, y1)
r = 4
leftUpPoint = (x0-r, y0-r)
rightDownPoint = (x0+r, y0+r)
text_color = (255, 0, 0)
draw.text((x0+2, y0), str(i + 1), font=font, fill=text_color)
draw.rectangle((x0, y0, x1, y1), outline=(255, 0, 0))
return [
gr.update(visible=True), box_sketch_template, seed, *visibilities, *colors, *styles, *prompts,
]
def main():
# load configs
with open('assets/color_idx.json', 'r') as f:
color_idx_dict = json.load(f)
color_idx_list = list(color_idx_dict)
with open('assets/font_idx_512.json', 'r') as f:
font_idx_dict = json.load(f)
font_idx_list = list(font_idx_dict)
with gr.Blocks(
title="Glyph-ByT5: A Customized Text Encoder for Accurate Visual Text Rendering",
css=css,
) as demo:
gr.HTML(html)
with gr.Row():
with gr.Column(elem_id="main-image"):
box_sketch_template = gr.Image(
value=Image.new('RGB', (1024, 1024), (255, 255, 255)),
sources=[],
interactive=False,
)
box_sketch_template.select(get_pixels, [box_sketch_template], [box_sketch_template])
with gr.Row():
redo = gr.Button(value='Redo - Cancel last point')
undo = gr.Button(value='Undo - Clear the canvas')
redo.click(exe_redo, [box_sketch_template], [box_sketch_template])
undo.click(exe_undo, [box_sketch_template], [box_sketch_template])
button_layout = gr.Button("(1) I've finished my layout!", elem_id="main_button", interactive=True)
prompts = []
colors = []
styles = []
color_row = [None] * (MAX_TEXT_BOX + 1)
with gr.Column(visible=False) as post_box:
for n in range(MAX_TEXT_BOX + 1):
if n == 0 :
with gr.Row(visible=True) as color_row[n]:
bg_prompt = gr.Textbox(label="Design prompt for the background image", value="")
bg_class = gr.Textbox(label="Design type for the background image (optional)", value="")
bg_tags = gr.Textbox(label="Design type for the background image (optional)", value="")
else:
with gr.Row(visible=False) as color_row[n]:
prompts.append(gr.Textbox(label="Prompt for box "+str(n)))
colors.append(gr.Dropdown(
label="Color for box "+str(n),
choices=color_idx_list,
))
styles.append(gr.Dropdown(
label="Font type for box "+str(n),
choices=font_idx_list,
))
seed_ = gr.Slider(label="Seed", minimum=-1, maximum=999999999, value=-1, step=1)
button_generate = gr.Button("(2) I've finished my texts, colors and styles, generate!", elem_id="main_button", interactive=True)
button_layout.click(process_box, inputs=[], outputs=[post_box, *color_row], queue=False)
with gr.Column():
output_image = gr.Image(label="Output Image", interactive=False)
button_generate.click(generate_image, inputs=[bg_prompt, bg_class, bg_tags, seed_, *(prompts + colors + styles)], outputs=[output_image], queue=True)
# examples
color_str = gr.Textbox(label="Color list", value="", visible=False)
style_str = gr.Textbox(label="Font type list", value="", visible=False)
box_str = gr.Textbox(label="Bbox list", value="", visible=False)
text_str = gr.Textbox(label="Text list", value="", visible=False)
gr.Examples(
examples=[
[
'The image features a small bunny rabbit sitting in a basket filled with various flowers. The basket is placed on a yellow background, creating a vibrant and cheerful scene. The flowers surrounding the rabbit come in different sizes and colors, adding to the overall visual appeal of the image. The rabbit appears to be the main focus of the scene, and its presence among the flowers creates a sense of harmony and balance.',
'Facebook Post',
'green, yellow, minimalist, easter day, happy easter day, easter, happy easter, decoration, happy, egg, spring, selebration, poster, illustration, greeting, season, design, colorful, cute, template',
'darkolivegreen, darkolivegreen, darkolivegreen',
'Gagalin-Regular, Gagalin-Regular, Brusher-Regular',
'MAY ALLYOUR PRAYERS BE ANSWERED**********HAVE A HAPPY**********Easter Day',
'[0.08267477203647416, 0.5355623100303951, 0.42857142857142855, 0.07477203647416414]; [0.08389057750759879, 0.1951367781155015, 0.38054711246200607, 0.03768996960486322]; [0.07537993920972644, 0.2601823708206687, 0.49544072948328266, 0.14650455927051673]',
1,
],
[
'The image features a large gray elephant sitting in a field of flowers, holding a smaller elephant in its arms. The scene is quite serene and picturesque, with the two elephants being the main focus of the image. The field is filled with various flowers, creating a beautiful and vibrant backdrop for the elephants.',
'Cards and invitations',
'Light green, orange, Illustration, watercolor, playful, Baby shower invitation, baby boy shower invitation, baby boy, welcoming baby boy, koala baby shower invitation, baby shower invitation for baby shower, baby boy invitation, background, playful baby shower card, baby shower, card, newborn, born, Baby Shirt Baby Shower Invitation',
'peru, olive, olivedrab, peru, peru, peru',
'LilitaOne, Sensei-Medium, Sensei-Medium, LilitaOne, LilitaOne, LilitaOne',
"RSVP to +123-456-7890**********Olivia Wilson**********Baby Shower**********Please Join Us For a**********In Honoring**********23 November, 2021 | 03:00 PM Fauget Hotels",
'[0.07112462006079028, 0.6462006079027356, 0.3373860182370821, 0.026747720364741642]; [0.07051671732522796, 0.38662613981762917, 0.37264437689969604, 0.059574468085106386]; [0.07234042553191489, 0.15623100303951368, 0.6547112462006079, 0.12401215805471125]; [0.0662613981762918, 0.06747720364741641, 0.3981762917933131, 0.035866261398176294]; [0.07051671732522796, 0.31550151975683893, 0.22006079027355624, 0.03951367781155015]; [0.06990881458966565, 0.48328267477203646, 0.39878419452887537, 0.1094224924012158]',
0,
],
[
'The image features a white background with a variety of colorful flowers and decorations. There are several pink flowers scattered throughout the scene, with some positioned closer to the top and others near the bottom. A blue flower can also be seen in the middle of the image. The overall composition creates a visually appealing and vibrant display.',
'Instagram Posts',
'grey, navy, purple, pink, teal, colorful, illustration, happy, celebration, post, party, year, new, event, celebrate, happy new year, new year, countdown, sparkle, firework',
'purple, midnightblue, black, black',
'Caveat-Regular, Gagalin-Regular, Quicksand-Light, Quicksand-Light',
'Happy New Year**********2024**********All THE BEST**********A fresh start to start a change for the better.',
'[0.2936170212765957, 0.2887537993920973, 0.40303951367781155, 0.07173252279635259]; [0.24984802431610942, 0.3951367781155015, 0.46200607902735563, 0.17203647416413373]; [0.3951367781155015, 0.1094224924012158, 0.2109422492401216, 0.02796352583586626]; [0.20911854103343466, 0.6127659574468085, 0.5586626139817629, 0.08085106382978724]',
1,
],
[
'The image features a stack of pancakes with syrup and strawberries on top. The pancakes are arranged in a visually appealing manner, with some pancakes placed on top of each other. The syrup is drizzled generously over the pancakes, and the strawberries are scattered around, adding a touch of color and freshness to the scene. The overall presentation of the pancakes is appetizing and inviting.',
'Instagram Posts',
'brown, peach, grey, modern, minimalist, simple, colorful, illustration, Instagram post, instagram, post, national pancake day, international pancake day, happy pancake day, pancake day, pancake, sweet, cake, discount, sale',
'dimgray, white, darkolivegreen',
'MoreSugarRegular, Chewy-Regular, Chewy-Regular',
'Get 75% Discount for your first order**********Order Now**********National Pancake Day',
'[0.043161094224924014, 0.5963525835866261, 0.2936170212765957, 0.08389057750759879]; [0.12279635258358662, 0.79209726443769, 0.26382978723404255, 0.05167173252279635]; [0.044984802431610946, 0.09787234042553192, 0.4413373860182371, 0.4158054711246201]',
1,
]
],
inputs=[
bg_prompt,
bg_class,
bg_tags,
color_str,
style_str,
text_str,
box_str,
seed_,
],
outputs=[post_box, box_sketch_template, seed_, *color_row, *colors, *styles, *prompts],
fn=process_example,
run_on_click=True,
label='Examples',
)
demo.queue()
demo.launch()
if __name__ == "__main__":
main()
|