Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2023 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import inspect | |
from typing import Any, Callable, Dict, List, Optional, Union | |
import numpy as np | |
import PIL.Image | |
import torch | |
from packaging import version | |
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer | |
from diffusers.configuration_utils import FrozenDict | |
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor | |
from diffusers.loaders import FromSingleFileMixin, LoraLoaderMixin, TextualInversionLoaderMixin | |
from diffusers.models import AsymmetricAutoencoderKL, AutoencoderKL, UNet2DConditionModel | |
from diffusers.models.lora import adjust_lora_scale_text_encoder | |
from diffusers.schedulers import KarrasDiffusionSchedulers | |
from diffusers.utils import USE_PEFT_BACKEND, deprecate, logging, scale_lora_layers, unscale_lora_layers | |
from diffusers.utils.torch_utils import randn_tensor | |
from diffusers.pipelines.pipeline_utils import DiffusionPipeline | |
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput | |
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker | |
from models.ReferenceNet_attention import ReferenceNetAttention | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
def prepare_mask_and_masked_image(image, mask, height, width, return_image: bool = False): | |
""" | |
Prepares a pair (image, mask) to be consumed by the Stable Diffusion pipeline. This means that those inputs will be | |
converted to ``torch.Tensor`` with shapes ``batch x channels x height x width`` where ``channels`` is ``3`` for the | |
``image`` and ``1`` for the ``mask``. | |
The ``image`` will be converted to ``torch.float32`` and normalized to be in ``[-1, 1]``. The ``mask`` will be | |
binarized (``mask > 0.5``) and cast to ``torch.float32`` too. | |
Args: | |
image (Union[np.array, PIL.Image, torch.Tensor]): The image to inpaint. | |
It can be a ``PIL.Image``, or a ``height x width x 3`` ``np.array`` or a ``channels x height x width`` | |
``torch.Tensor`` or a ``batch x channels x height x width`` ``torch.Tensor``. | |
mask (_type_): The mask to apply to the image, i.e. regions to inpaint. | |
It can be a ``PIL.Image``, or a ``height x width`` ``np.array`` or a ``1 x height x width`` | |
``torch.Tensor`` or a ``batch x 1 x height x width`` ``torch.Tensor``. | |
Raises: | |
ValueError: ``torch.Tensor`` images should be in the ``[-1, 1]`` range. ValueError: ``torch.Tensor`` mask | |
should be in the ``[0, 1]`` range. ValueError: ``mask`` and ``image`` should have the same spatial dimensions. | |
TypeError: ``mask`` is a ``torch.Tensor`` but ``image`` is not | |
(ot the other way around). | |
Returns: | |
tuple[torch.Tensor]: The pair (mask, masked_image) as ``torch.Tensor`` with 4 | |
dimensions: ``batch x channels x height x width``. | |
""" | |
deprecation_message = "The prepare_mask_and_masked_image method is deprecated and will be removed in a future version. Please use VaeImageProcessor.preprocess instead" | |
deprecate( | |
"prepare_mask_and_masked_image", | |
"0.30.0", | |
deprecation_message, | |
) | |
if image is None: | |
raise ValueError("`image` input cannot be undefined.") | |
if mask is None: | |
raise ValueError("`mask_image` input cannot be undefined.") | |
if isinstance(image, torch.Tensor): | |
if not isinstance(mask, torch.Tensor): | |
raise TypeError(f"`image` is a torch.Tensor but `mask` (type: {type(mask)} is not") | |
# Batch single image | |
if image.ndim == 3: | |
assert image.shape[0] == 3, "Image outside a batch should be of shape (3, H, W)" | |
image = image.unsqueeze(0) | |
# Batch and add channel dim for single mask | |
if mask.ndim == 2: | |
mask = mask.unsqueeze(0).unsqueeze(0) | |
# Batch single mask or add channel dim | |
if mask.ndim == 3: | |
# Single batched mask, no channel dim or single mask not batched but channel dim | |
if mask.shape[0] == 1: | |
mask = mask.unsqueeze(0) | |
# Batched masks no channel dim | |
else: | |
mask = mask.unsqueeze(1) | |
assert image.ndim == 4 and mask.ndim == 4, "Image and Mask must have 4 dimensions" | |
assert image.shape[-2:] == mask.shape[-2:], "Image and Mask must have the same spatial dimensions" | |
assert image.shape[0] == mask.shape[0], "Image and Mask must have the same batch size" | |
# Check image is in [-1, 1] | |
if image.min() < -1 or image.max() > 1: | |
raise ValueError("Image should be in [-1, 1] range") | |
# Check mask is in [0, 1] | |
if mask.min() < 0 or mask.max() > 1: | |
raise ValueError("Mask should be in [0, 1] range") | |
# Binarize mask | |
mask[mask < 0.5] = 0 | |
mask[mask >= 0.5] = 1 | |
# Image as float32 | |
image = image.to(dtype=torch.float32) | |
elif isinstance(mask, torch.Tensor): | |
raise TypeError(f"`mask` is a torch.Tensor but `image` (type: {type(image)} is not") | |
else: | |
# preprocess image | |
if isinstance(image, (PIL.Image.Image, np.ndarray)): | |
image = [image] | |
if isinstance(image, list) and isinstance(image[0], PIL.Image.Image): | |
# resize all images w.r.t passed height an width | |
image = [i.resize((width, height), resample=PIL.Image.LANCZOS) for i in image] | |
image = [np.array(i.convert("RGB"))[None, :] for i in image] | |
image = np.concatenate(image, axis=0) | |
elif isinstance(image, list) and isinstance(image[0], np.ndarray): | |
image = np.concatenate([i[None, :] for i in image], axis=0) | |
image = image.transpose(0, 3, 1, 2) | |
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0 | |
# preprocess mask | |
if isinstance(mask, (PIL.Image.Image, np.ndarray)): | |
mask = [mask] | |
if isinstance(mask, list) and isinstance(mask[0], PIL.Image.Image): | |
mask = [i.resize((width, height), resample=PIL.Image.LANCZOS) for i in mask] | |
mask = np.concatenate([np.array(m.convert("L"))[None, None, :] for m in mask], axis=0) | |
mask = mask.astype(np.float32) / 255.0 | |
elif isinstance(mask, list) and isinstance(mask[0], np.ndarray): | |
mask = np.concatenate([m[None, None, :] for m in mask], axis=0) | |
mask[mask < 0.5] = 0 | |
mask[mask >= 0.5] = 1 | |
mask = torch.from_numpy(mask) | |
masked_image = image * (mask < 0.5) | |
# n.b. ensure backwards compatibility as old function does not return image | |
if return_image: | |
return mask, masked_image, image | |
return mask, masked_image | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents | |
def retrieve_latents(encoder_output, generator): | |
if hasattr(encoder_output, "latent_dist"): | |
return encoder_output.latent_dist.sample(generator) | |
elif hasattr(encoder_output, "latents"): | |
return encoder_output.latents | |
else: | |
raise AttributeError("Could not access latents of provided encoder_output") | |
class MimicBrushPipeline( | |
DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin, FromSingleFileMixin | |
): | |
r""" | |
Pipeline for text-guided image inpainting using Stable Diffusion. | |
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods | |
implemented for all pipelines (downloading, saving, running on a particular device, etc.). | |
The pipeline also inherits the following loading methods: | |
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings | |
- [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights | |
- [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights | |
Args: | |
vae ([`AutoencoderKL`, `AsymmetricAutoencoderKL`]): | |
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. | |
text_encoder ([`CLIPTextModel`]): | |
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). | |
tokenizer ([`~transformers.CLIPTokenizer`]): | |
A `CLIPTokenizer` to tokenize text. | |
unet ([`UNet2DConditionModel`]): | |
A `UNet2DConditionModel` to denoise the encoded image latents. | |
scheduler ([`SchedulerMixin`]): | |
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of | |
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. | |
safety_checker ([`StableDiffusionSafetyChecker`]): | |
Classification module that estimates whether generated images could be considered offensive or harmful. | |
Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details | |
about a model's potential harms. | |
feature_extractor ([`~transformers.CLIPImageProcessor`]): | |
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`. | |
""" | |
model_cpu_offload_seq = "text_encoder->unet->vae" | |
_optional_components = ["safety_checker", "feature_extractor"] | |
_exclude_from_cpu_offload = ["safety_checker"] | |
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds", "mask", "masked_image_latents"] | |
def __init__( | |
self, | |
vae: Union[AutoencoderKL, AsymmetricAutoencoderKL], | |
text_encoder: CLIPTextModel, | |
tokenizer: CLIPTokenizer, | |
unet: UNet2DConditionModel, | |
scheduler: KarrasDiffusionSchedulers, | |
safety_checker: StableDiffusionSafetyChecker, | |
feature_extractor: CLIPImageProcessor, | |
requires_safety_checker: bool = True, | |
): | |
super().__init__() | |
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1: | |
deprecation_message = ( | |
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`" | |
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure " | |
"to update the config accordingly as leaving `steps_offset` might led to incorrect results" | |
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," | |
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" | |
" file" | |
) | |
deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False) | |
new_config = dict(scheduler.config) | |
new_config["steps_offset"] = 1 | |
scheduler._internal_dict = FrozenDict(new_config) | |
if hasattr(scheduler.config, "skip_prk_steps") and scheduler.config.skip_prk_steps is False: | |
deprecation_message = ( | |
f"The configuration file of this scheduler: {scheduler} has not set the configuration" | |
" `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make" | |
" sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to" | |
" incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face" | |
" Hub, it would be very nice if you could open a Pull request for the" | |
" `scheduler/scheduler_config.json` file" | |
) | |
deprecate("skip_prk_steps not set", "1.0.0", deprecation_message, standard_warn=False) | |
new_config = dict(scheduler.config) | |
new_config["skip_prk_steps"] = True | |
scheduler._internal_dict = FrozenDict(new_config) | |
if safety_checker is None and requires_safety_checker: | |
logger.warning( | |
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" | |
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" | |
" results in services or applications open to the public. Both the diffusers team and Hugging Face" | |
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" | |
" it only for use-cases that involve analyzing network behavior or auditing its results. For more" | |
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." | |
) | |
if safety_checker is not None and feature_extractor is None: | |
raise ValueError( | |
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" | |
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." | |
) | |
is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse( | |
version.parse(unet.config._diffusers_version).base_version | |
) < version.parse("0.9.0.dev0") | |
is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64 | |
if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64: | |
deprecation_message = ( | |
"The configuration file of the unet has set the default `sample_size` to smaller than" | |
" 64 which seems highly unlikely .If you're checkpoint is a fine-tuned version of any of the" | |
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-" | |
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5" | |
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the" | |
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`" | |
" in the config might lead to incorrect results in future versions. If you have downloaded this" | |
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for" | |
" the `unet/config.json` file" | |
) | |
deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False) | |
new_config = dict(unet.config) | |
new_config["sample_size"] = 64 | |
unet._internal_dict = FrozenDict(new_config) | |
# Check shapes, assume num_channels_latents == 4, num_channels_mask == 1, num_channels_masked == 4 | |
if unet.config.in_channels != 9: | |
logger.info(f"You have loaded a UNet with {unet.config.in_channels} input channels which.") | |
self.register_modules( | |
vae=vae, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
unet=unet, | |
scheduler=scheduler, | |
safety_checker=safety_checker, | |
feature_extractor=feature_extractor, | |
) | |
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) | |
self.mask_processor = VaeImageProcessor( | |
vae_scale_factor=self.vae_scale_factor, do_normalize=False, do_binarize=True, do_convert_grayscale=True | |
) | |
self.register_to_config(requires_safety_checker=requires_safety_checker) | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt | |
def _encode_prompt( | |
self, | |
prompt, | |
device, | |
num_images_per_prompt, | |
do_classifier_free_guidance, | |
negative_prompt=None, | |
prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
lora_scale: Optional[float] = None, | |
**kwargs, | |
): | |
deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple." | |
deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False) | |
prompt_embeds_tuple = self.encode_prompt( | |
prompt=prompt, | |
device=device, | |
num_images_per_prompt=num_images_per_prompt, | |
do_classifier_free_guidance=do_classifier_free_guidance, | |
negative_prompt=negative_prompt, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
lora_scale=lora_scale, | |
**kwargs, | |
) | |
# concatenate for backwards comp | |
prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]]) | |
return prompt_embeds | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt | |
def encode_prompt( | |
self, | |
prompt, | |
device, | |
num_images_per_prompt, | |
do_classifier_free_guidance, | |
negative_prompt=None, | |
prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
lora_scale: Optional[float] = None, | |
clip_skip: Optional[int] = None, | |
): | |
r""" | |
Encodes the prompt into text encoder hidden states. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
prompt to be encoded | |
device: (`torch.device`): | |
torch device | |
num_images_per_prompt (`int`): | |
number of images that should be generated per prompt | |
do_classifier_free_guidance (`bool`): | |
whether to use classifier free guidance or not | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
less than `1`). | |
prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
provided, text embeddings will be generated from `prompt` input argument. | |
negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
argument. | |
lora_scale (`float`, *optional*): | |
A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. | |
clip_skip (`int`, *optional*): | |
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that | |
the output of the pre-final layer will be used for computing the prompt embeddings. | |
""" | |
# set lora scale so that monkey patched LoRA | |
# function of text encoder can correctly access it | |
if lora_scale is not None and isinstance(self, LoraLoaderMixin): | |
self._lora_scale = lora_scale | |
# dynamically adjust the LoRA scale | |
if not USE_PEFT_BACKEND: | |
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) | |
else: | |
scale_lora_layers(self.text_encoder, lora_scale) | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
if prompt_embeds is None: | |
# textual inversion: procecss multi-vector tokens if necessary | |
if isinstance(self, TextualInversionLoaderMixin): | |
prompt = self.maybe_convert_prompt(prompt, self.tokenizer) | |
text_inputs = self.tokenizer( | |
prompt, | |
padding="max_length", | |
max_length=self.tokenizer.model_max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
text_input_ids = text_inputs.input_ids | |
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( | |
text_input_ids, untruncated_ids | |
): | |
removed_text = self.tokenizer.batch_decode( | |
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] | |
) | |
logger.warning( | |
"The following part of your input was truncated because CLIP can only handle sequences up to" | |
f" {self.tokenizer.model_max_length} tokens: {removed_text}" | |
) | |
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
attention_mask = text_inputs.attention_mask.to(device) | |
else: | |
attention_mask = None | |
if clip_skip is None: | |
prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) | |
prompt_embeds = prompt_embeds[0] | |
else: | |
prompt_embeds = self.text_encoder( | |
text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True | |
) | |
# Access the `hidden_states` first, that contains a tuple of | |
# all the hidden states from the encoder layers. Then index into | |
# the tuple to access the hidden states from the desired layer. | |
prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] | |
# We also need to apply the final LayerNorm here to not mess with the | |
# representations. The `last_hidden_states` that we typically use for | |
# obtaining the final prompt representations passes through the LayerNorm | |
# layer. | |
prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) | |
if self.text_encoder is not None: | |
prompt_embeds_dtype = self.text_encoder.dtype | |
elif self.unet is not None: | |
prompt_embeds_dtype = self.unet.dtype | |
else: | |
prompt_embeds_dtype = prompt_embeds.dtype | |
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) | |
bs_embed, seq_len, _ = prompt_embeds.shape | |
# duplicate text embeddings for each generation per prompt, using mps friendly method | |
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
# get unconditional embeddings for classifier free guidance | |
if do_classifier_free_guidance and negative_prompt_embeds is None: | |
uncond_tokens: List[str] | |
if negative_prompt is None: | |
uncond_tokens = [""] * batch_size | |
elif prompt is not None and type(prompt) is not type(negative_prompt): | |
raise TypeError( | |
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
f" {type(prompt)}." | |
) | |
elif isinstance(negative_prompt, str): | |
uncond_tokens = [negative_prompt] | |
elif batch_size != len(negative_prompt): | |
raise ValueError( | |
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
" the batch size of `prompt`." | |
) | |
else: | |
uncond_tokens = negative_prompt | |
# textual inversion: procecss multi-vector tokens if necessary | |
if isinstance(self, TextualInversionLoaderMixin): | |
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) | |
max_length = prompt_embeds.shape[1] | |
uncond_input = self.tokenizer( | |
uncond_tokens, | |
padding="max_length", | |
max_length=max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
attention_mask = uncond_input.attention_mask.to(device) | |
else: | |
attention_mask = None | |
negative_prompt_embeds = self.text_encoder( | |
uncond_input.input_ids.to(device), | |
attention_mask=attention_mask, | |
) | |
negative_prompt_embeds = negative_prompt_embeds[0] | |
if do_classifier_free_guidance: | |
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
seq_len = negative_prompt_embeds.shape[1] | |
negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) | |
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) | |
if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND: | |
# Retrieve the original scale by scaling back the LoRA layers | |
unscale_lora_layers(self.text_encoder, lora_scale) | |
return prompt_embeds, negative_prompt_embeds | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker | |
def run_safety_checker(self, image, device, dtype): | |
if self.safety_checker is None: | |
has_nsfw_concept = None | |
else: | |
if torch.is_tensor(image): | |
feature_extractor_input = self.image_processor.postprocess(image, output_type="pil") | |
else: | |
feature_extractor_input = self.image_processor.numpy_to_pil(image) | |
safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device) | |
image, has_nsfw_concept = self.safety_checker( | |
images=image, clip_input=safety_checker_input.pixel_values.to(dtype) | |
) | |
return image, has_nsfw_concept | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs | |
def prepare_extra_step_kwargs(self, generator, eta): | |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
# and should be between [0, 1] | |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
extra_step_kwargs = {} | |
if accepts_eta: | |
extra_step_kwargs["eta"] = eta | |
# check if the scheduler accepts generator | |
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
if accepts_generator: | |
extra_step_kwargs["generator"] = generator | |
return extra_step_kwargs | |
def check_inputs( | |
self, | |
prompt, | |
height, | |
width, | |
strength, | |
callback_steps, | |
negative_prompt=None, | |
prompt_embeds=None, | |
negative_prompt_embeds=None, | |
callback_on_step_end_tensor_inputs=None, | |
): | |
if strength < 0 or strength > 1: | |
raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}") | |
if height % self.vae_scale_factor != 0 or width % self.vae_scale_factor != 0: | |
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | |
if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): | |
raise ValueError( | |
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | |
f" {type(callback_steps)}." | |
) | |
if callback_on_step_end_tensor_inputs is not None and not all( | |
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs | |
): | |
raise ValueError( | |
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" | |
) | |
if prompt is not None and prompt_embeds is not None: | |
raise ValueError( | |
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
" only forward one of the two." | |
) | |
elif prompt is None and prompt_embeds is None: | |
raise ValueError( | |
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | |
) | |
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | |
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
if negative_prompt is not None and negative_prompt_embeds is not None: | |
raise ValueError( | |
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" | |
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
) | |
if prompt_embeds is not None and negative_prompt_embeds is not None: | |
if prompt_embeds.shape != negative_prompt_embeds.shape: | |
raise ValueError( | |
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" | |
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" | |
f" {negative_prompt_embeds.shape}." | |
) | |
def prepare_latents( | |
self, | |
batch_size, | |
num_channels_latents, | |
height, | |
width, | |
dtype, | |
device, | |
generator, | |
latents=None, | |
image=None, | |
source_image=None, | |
timestep=None, | |
is_strength_max=True, | |
return_noise=False, | |
return_image_latents=False, | |
): | |
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor) | |
if isinstance(generator, list) and len(generator) != batch_size: | |
raise ValueError( | |
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
) | |
if (image is None or timestep is None) and not is_strength_max: | |
raise ValueError( | |
"Since strength < 1. initial latents are to be initialised as a combination of Image + Noise." | |
"However, either the image or the noise timestep has not been provided." | |
) | |
if return_image_latents or (latents is None and not is_strength_max): | |
image = image.to(device=device, dtype=dtype) | |
if image.shape[1] == 4: | |
image_latents = image | |
else: | |
image_latents = self._encode_vae_image(image=image, generator=generator) | |
image_latents = image_latents.repeat(batch_size // image_latents.shape[0], 1, 1, 1) | |
source_image = source_image.to(device=device, dtype=dtype) | |
source_image_latents = self._encode_vae_image(image=source_image, generator=generator) | |
if latents is None: | |
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
# if strength is 1. then initialise the latents to noise, else initial to image + noise | |
latents = noise if is_strength_max else self.scheduler.add_noise(image_latents, noise, timestep) | |
# if pure noise then scale the initial latents by the Scheduler's init sigma | |
latents = latents * self.scheduler.init_noise_sigma if is_strength_max else latents | |
else: | |
noise = latents.to(device) | |
latents = noise * self.scheduler.init_noise_sigma | |
outputs = (latents,) | |
if return_noise: | |
outputs += (noise,) | |
if return_image_latents: | |
outputs += (image_latents,) | |
return outputs, source_image_latents | |
def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator): | |
if isinstance(generator, list): | |
image_latents = [ | |
retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i]) | |
for i in range(image.shape[0]) | |
] | |
image_latents = torch.cat(image_latents, dim=0) | |
else: | |
image_latents = retrieve_latents(self.vae.encode(image), generator=generator) | |
image_latents = self.vae.config.scaling_factor * image_latents | |
return image_latents | |
def prepare_mask_latents( | |
self, mask, masked_image, batch_size, height, width, dtype, device, generator, do_classifier_free_guidance | |
): | |
# resize the mask to latents shape as we concatenate the mask to the latents | |
# we do that before converting to dtype to avoid breaking in case we're using cpu_offload | |
# and half precision | |
mask = torch.nn.functional.interpolate( | |
mask, size=(height // self.vae_scale_factor, width // self.vae_scale_factor) | |
) | |
mask = mask.to(device=device, dtype=dtype) | |
masked_image = masked_image.to(device=device, dtype=dtype) | |
if masked_image.shape[1] == 4: | |
masked_image_latents = masked_image | |
else: | |
masked_image_latents = self._encode_vae_image(masked_image, generator=generator) | |
# duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method | |
if mask.shape[0] < batch_size: | |
if not batch_size % mask.shape[0] == 0: | |
raise ValueError( | |
"The passed mask and the required batch size don't match. Masks are supposed to be duplicated to" | |
f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number" | |
" of masks that you pass is divisible by the total requested batch size." | |
) | |
mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1) | |
if masked_image_latents.shape[0] < batch_size: | |
if not batch_size % masked_image_latents.shape[0] == 0: | |
raise ValueError( | |
"The passed images and the required batch size don't match. Images are supposed to be duplicated" | |
f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed." | |
" Make sure the number of images that you pass is divisible by the total requested batch size." | |
) | |
masked_image_latents = masked_image_latents.repeat(batch_size // masked_image_latents.shape[0], 1, 1, 1) | |
mask = torch.cat([mask] * 2) if do_classifier_free_guidance else mask | |
masked_image_latents = ( | |
torch.cat([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents | |
) | |
# aligning device to prevent device errors when concating it with the latent model input | |
masked_image_latents = masked_image_latents.to(device=device, dtype=dtype) | |
return mask, masked_image_latents | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps | |
def get_timesteps(self, num_inference_steps, strength, device): | |
# get the original timestep using init_timestep | |
init_timestep = min(int(num_inference_steps * strength), num_inference_steps) | |
t_start = max(num_inference_steps - init_timestep, 0) | |
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :] | |
return timesteps, num_inference_steps - t_start | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_freeu | |
def enable_freeu(self, s1: float, s2: float, b1: float, b2: float): | |
r"""Enables the FreeU mechanism as in https://arxiv.org/abs/2309.11497. | |
The suffixes after the scaling factors represent the stages where they are being applied. | |
Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of the values | |
that are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL. | |
Args: | |
s1 (`float`): | |
Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to | |
mitigate "oversmoothing effect" in the enhanced denoising process. | |
s2 (`float`): | |
Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to | |
mitigate "oversmoothing effect" in the enhanced denoising process. | |
b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features. | |
b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features. | |
""" | |
if not hasattr(self, "unet"): | |
raise ValueError("The pipeline must have `unet` for using FreeU.") | |
self.unet.enable_freeu(s1=s1, s2=s2, b1=b1, b2=b2) | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_freeu | |
def disable_freeu(self): | |
"""Disables the FreeU mechanism if enabled.""" | |
self.unet.disable_freeu() | |
# Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding | |
def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32): | |
""" | |
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298 | |
Args: | |
timesteps (`torch.Tensor`): | |
generate embedding vectors at these timesteps | |
embedding_dim (`int`, *optional*, defaults to 512): | |
dimension of the embeddings to generate | |
dtype: | |
data type of the generated embeddings | |
Returns: | |
`torch.FloatTensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)` | |
""" | |
assert len(w.shape) == 1 | |
w = w * 1000.0 | |
half_dim = embedding_dim // 2 | |
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1) | |
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb) | |
emb = w.to(dtype)[:, None] * emb[None, :] | |
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) | |
if embedding_dim % 2 == 1: # zero pad | |
emb = torch.nn.functional.pad(emb, (0, 1)) | |
assert emb.shape == (w.shape[0], embedding_dim) | |
return emb | |
def guidance_scale(self): | |
return self._guidance_scale | |
def clip_skip(self): | |
return self._clip_skip | |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
# corresponds to doing no classifier free guidance. | |
def do_classifier_free_guidance(self): | |
return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None | |
def cross_attention_kwargs(self): | |
return self._cross_attention_kwargs | |
def num_timesteps(self): | |
return self._num_timesteps | |
def __call__( | |
self, | |
prompt: Union[str, List[str]] = None, | |
image: PipelineImageInput = None, | |
mask_image: PipelineImageInput = None, | |
masked_image_latents: torch.FloatTensor = None, | |
height: Optional[int] = None, | |
width: Optional[int] = None, | |
strength: float = 1.0, | |
num_inference_steps: int = 50, | |
guidance_scale: float = 7.5, | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
num_images_per_prompt: Optional[int] = 1, | |
eta: float = 0.0, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.FloatTensor] = None, | |
prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
clip_skip: int = None, | |
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | |
callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
source_image: PipelineImageInput = None, | |
referencenet = None, | |
clip_image_embed = None, | |
depth_feature = None, | |
**kwargs, | |
): | |
r""" | |
The call function to the pipeline for generation. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. | |
image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`): | |
`Image`, numpy array or tensor representing an image batch to be inpainted (which parts of the image to | |
be masked out with `mask_image` and repainted according to `prompt`). For both numpy array and pytorch | |
tensor, the expected value range is between `[0, 1]` If it's a tensor or a list or tensors, the | |
expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a numpy array or a list of arrays, the | |
expected shape should be `(B, H, W, C)` or `(H, W, C)` It can also accept image latents as `image`, but | |
if passing latents directly it is not encoded again. | |
mask_image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`): | |
`Image`, numpy array or tensor representing an image batch to mask `image`. White pixels in the mask | |
are repainted while black pixels are preserved. If `mask_image` is a PIL image, it is converted to a | |
single channel (luminance) before use. If it's a numpy array or pytorch tensor, it should contain one | |
color channel (L) instead of 3, so the expected shape for pytorch tensor would be `(B, 1, H, W)`, `(B, | |
H, W)`, `(1, H, W)`, `(H, W)`. And for numpy array would be for `(B, H, W, 1)`, `(B, H, W)`, `(H, W, | |
1)`, or `(H, W)`. | |
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): | |
The height in pixels of the generated image. | |
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): | |
The width in pixels of the generated image. | |
strength (`float`, *optional*, defaults to 1.0): | |
Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a | |
starting point and more noise is added the higher the `strength`. The number of denoising steps depends | |
on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising | |
process runs for the full number of iterations specified in `num_inference_steps`. A value of 1 | |
essentially ignores `image`. | |
num_inference_steps (`int`, *optional*, defaults to 50): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. This parameter is modulated by `strength`. | |
guidance_scale (`float`, *optional*, defaults to 7.5): | |
A higher guidance scale value encourages the model to generate images closely linked to the text | |
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts to guide what to not include in image generation. If not defined, you need to | |
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). | |
num_images_per_prompt (`int`, *optional*, defaults to 1): | |
The number of images to generate per prompt. | |
eta (`float`, *optional*, defaults to 0.0): | |
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies | |
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. | |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make | |
generation deterministic. | |
latents (`torch.FloatTensor`, *optional*): | |
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image | |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
tensor is generated by sampling using the supplied random `generator`. | |
prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not | |
provided, text embeddings are generated from the `prompt` input argument. | |
negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If | |
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generated image. Choose between `PIL.Image` or `np.array`. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | |
plain tuple. | |
cross_attention_kwargs (`dict`, *optional*): | |
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in | |
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
clip_skip (`int`, *optional*): | |
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that | |
the output of the pre-final layer will be used for computing the prompt embeddings. | |
callback_on_step_end (`Callable`, *optional*): | |
A function that calls at the end of each denoising steps during the inference. The function is called | |
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, | |
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by | |
`callback_on_step_end_tensor_inputs`. | |
callback_on_step_end_tensor_inputs (`List`, *optional*): | |
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list | |
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the | |
`._callback_tensor_inputs` attribute of your pipeine class. | |
Examples: | |
```py | |
>>> import PIL | |
>>> import requests | |
>>> import torch | |
>>> from io import BytesIO | |
>>> from diffusers import StableDiffusionInpaintPipeline | |
>>> def download_image(url): | |
... response = requests.get(url) | |
... return PIL.Image.open(BytesIO(response.content)).convert("RGB") | |
>>> img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png" | |
>>> mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png" | |
>>> init_image = download_image(img_url).resize((512, 512)) | |
>>> mask_image = download_image(mask_url).resize((512, 512)) | |
>>> pipe = StableDiffusionInpaintPipeline.from_pretrained( | |
... "runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16 | |
... ) | |
>>> pipe = pipe.to("cuda") | |
>>> prompt = "Face of a yellow cat, high resolution, sitting on a park bench" | |
>>> image = pipe(prompt=prompt, image=init_image, mask_image=mask_image).images[0] | |
``` | |
Returns: | |
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: | |
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, | |
otherwise a `tuple` is returned where the first element is a list with the generated images and the | |
second element is a list of `bool`s indicating whether the corresponding generated image contains | |
"not-safe-for-work" (nsfw) content. | |
""" | |
callback = kwargs.pop("callback", None) | |
callback_steps = kwargs.pop("callback_steps", None) | |
if callback is not None: | |
deprecate( | |
"callback", | |
"1.0.0", | |
"Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", | |
) | |
if callback_steps is not None: | |
deprecate( | |
"callback_steps", | |
"1.0.0", | |
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", | |
) | |
# 0. Default height and width to unet | |
height = height or self.unet.config.sample_size * self.vae_scale_factor | |
width = width or self.unet.config.sample_size * self.vae_scale_factor | |
# 1. Check inputs | |
self.check_inputs( | |
prompt, | |
height, | |
width, | |
strength, | |
callback_steps, | |
negative_prompt, | |
prompt_embeds, | |
negative_prompt_embeds, | |
callback_on_step_end_tensor_inputs, | |
) | |
self._guidance_scale = guidance_scale | |
self._clip_skip = clip_skip | |
self._cross_attention_kwargs = cross_attention_kwargs | |
reference_control_writer = ReferenceNetAttention(referencenet, do_classifier_free_guidance=True, mode='write', fusion_blocks="midup", batch_size=1, is_image=True,) | |
reference_control_reader = ReferenceNetAttention(self.unet, do_classifier_free_guidance=True, mode='read', fusion_blocks="midup", batch_size=1, is_image=True,) | |
# 2. Define call parameters | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
device = self._execution_device | |
# 3. Encode input prompt | |
text_encoder_lora_scale = ( | |
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None | |
) | |
prompt_embeds, negative_prompt_embeds = self.encode_prompt( | |
prompt, | |
device, | |
num_images_per_prompt, | |
self.do_classifier_free_guidance, | |
negative_prompt, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
lora_scale=text_encoder_lora_scale, | |
clip_skip=self.clip_skip, | |
) | |
# For classifier free guidance, we need to do two forward passes. | |
# Here we concatenate the unconditional and text embeddings into a single batch | |
# to avoid doing two forward passes | |
if self.do_classifier_free_guidance: | |
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) | |
# 4. set timesteps | |
self.scheduler.set_timesteps(num_inference_steps, device=device) | |
timesteps, num_inference_steps = self.get_timesteps( | |
num_inference_steps=num_inference_steps, strength=strength, device=device | |
) | |
# check that number of inference steps is not < 1 - as this doesn't make sense | |
if num_inference_steps < 1: | |
raise ValueError( | |
f"After adjusting the num_inference_steps by strength parameter: {strength}, the number of pipeline" | |
f"steps is {num_inference_steps} which is < 1 and not appropriate for this pipeline." | |
) | |
# at which timestep to set the initial noise (n.b. 50% if strength is 0.5) | |
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) | |
# create a boolean to check if the strength is set to 1. if so then initialise the latents with pure noise | |
is_strength_max = strength == 1.0 | |
# 5. Preprocess mask and image | |
init_image = self.image_processor.preprocess(image, height=height, width=width) | |
init_image = init_image.to(dtype=torch.float32) | |
source_init_image = self.image_processor.preprocess(source_image, height=height, width=width) | |
source_init_image = source_init_image.to(dtype=torch.float32) | |
# 6. Prepare latent variables | |
num_channels_latents = self.vae.config.latent_channels | |
num_channels_unet = self.unet.config.in_channels | |
return_image_latents = num_channels_unet == 4 | |
latents_outputs, source_image_latents = self.prepare_latents( | |
batch_size * num_images_per_prompt, | |
num_channels_latents, | |
height, | |
width, | |
prompt_embeds.dtype, | |
device, | |
generator, | |
latents, | |
image=init_image, | |
source_image = source_init_image, | |
timestep=latent_timestep, | |
is_strength_max=is_strength_max, | |
return_noise=True, | |
return_image_latents=return_image_latents, | |
) | |
if return_image_latents: | |
latents, noise, image_latents = latents_outputs | |
else: | |
latents, noise = latents_outputs | |
# 7. Prepare mask latent variables | |
mask_condition = self.mask_processor.preprocess(mask_image, height=height, width=width) | |
if masked_image_latents is None: | |
masked_image = init_image # * (mask_condition < 0.5) | |
else: | |
masked_image = masked_image_latents | |
mask, masked_image_latents = self.prepare_mask_latents( | |
mask_condition, | |
masked_image, | |
batch_size * num_images_per_prompt, | |
height, | |
width, | |
prompt_embeds.dtype, | |
device, | |
generator, | |
self.do_classifier_free_guidance, | |
) | |
# 8. Check that sizes of mask, masked image and latents match | |
if num_channels_unet == 9: | |
# default case for runwayml/stable-diffusion-inpainting | |
num_channels_mask = mask.shape[1] | |
num_channels_masked_image = masked_image_latents.shape[1] | |
if num_channels_latents + num_channels_mask + num_channels_masked_image != self.unet.config.in_channels: | |
raise ValueError( | |
f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects" | |
f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +" | |
f" `num_channels_mask`: {num_channels_mask} + `num_channels_masked_image`: {num_channels_masked_image}" | |
f" = {num_channels_latents+num_channels_masked_image+num_channels_mask}. Please verify the config of" | |
" `pipeline.unet` or your `mask_image` or `image` input." | |
) | |
elif num_channels_unet != 13: | |
raise ValueError( | |
f"The unet {self.unet.__class__} should have either 13 or 9 input channels, not {self.unet.config.in_channels}." | |
) | |
# 9. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
# 9.5 Optionally get Guidance Scale Embedding | |
timestep_cond = None | |
#print('scale not -1') | |
if self.unet.config.time_cond_proj_dim is not None: | |
#print('scale-1') | |
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt) | |
timestep_cond = self.get_guidance_scale_embedding( | |
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim | |
).to(device=device, dtype=latents.dtype) | |
# 10. Denoising loop | |
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
self._num_timesteps = len(timesteps) | |
with self.progress_bar(total=num_inference_steps) as progress_bar: | |
for i, t in enumerate(timesteps): | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents | |
# concat latents, mask, masked_image_latents in the channel dimension | |
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
#latent_model_input = torch.cat([latent_model_input, mask, masked_image_latents], dim=1) | |
latent_model_input = torch.cat([latent_model_input, mask, masked_image_latents, torch.cat([depth_feature] * 2)], dim=1) | |
#if i == 0: | |
if i >= 0: | |
reference_control_reader.clear() | |
reference_control_writer.clear() | |
referencenet( | |
source_image_latents.repeat(2, 1, 1, 1), | |
t, | |
#torch.zeros_like(t), | |
encoder_hidden_states=clip_image_embed, | |
return_dict=False, | |
) | |
reference_control_reader.update(reference_control_writer) | |
# predict the noise residual | |
noise_pred = self.unet( | |
latent_model_input, | |
t, | |
encoder_hidden_states=prompt_embeds, | |
timestep_cond=timestep_cond, | |
cross_attention_kwargs=self.cross_attention_kwargs, | |
return_dict=False, | |
)[0] | |
# perform guidance | |
if self.do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) | |
#noise_pred = noise_pred_uncond | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] | |
if num_channels_unet == 4: | |
init_latents_proper = image_latents | |
if self.do_classifier_free_guidance: | |
init_mask, _ = mask.chunk(2) | |
else: | |
init_mask = mask | |
if i < len(timesteps) - 1: | |
noise_timestep = timesteps[i + 1] | |
init_latents_proper = self.scheduler.add_noise( | |
init_latents_proper, noise, torch.tensor([noise_timestep]) | |
) | |
latents = (1 - init_mask) * init_latents_proper + init_mask * latents | |
if callback_on_step_end is not None: | |
callback_kwargs = {} | |
for k in callback_on_step_end_tensor_inputs: | |
callback_kwargs[k] = locals()[k] | |
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
latents = callback_outputs.pop("latents", latents) | |
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | |
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) | |
mask = callback_outputs.pop("mask", mask) | |
masked_image_latents = callback_outputs.pop("masked_image_latents", masked_image_latents) | |
# call the callback, if provided | |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
progress_bar.update() | |
if callback is not None and i % callback_steps == 0: | |
step_idx = i // getattr(self.scheduler, "order", 1) | |
callback(step_idx, t, latents) | |
if not output_type == "latent": | |
condition_kwargs = {} | |
if isinstance(self.vae, AsymmetricAutoencoderKL): | |
init_image = init_image.to(device=device, dtype=masked_image_latents.dtype) | |
init_image_condition = init_image.clone() | |
init_image = self._encode_vae_image(init_image, generator=generator) | |
mask_condition = mask_condition.to(device=device, dtype=masked_image_latents.dtype) | |
condition_kwargs = {"image": init_image_condition, "mask": mask_condition} | |
image = self.vae.decode( | |
latents / self.vae.config.scaling_factor, return_dict=False, generator=generator, **condition_kwargs | |
)[0] | |
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) | |
else: | |
image = latents | |
has_nsfw_concept = None | |
if has_nsfw_concept is None: | |
do_denormalize = [True] * image.shape[0] | |
else: | |
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] | |
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) | |
# Offload all models | |
self.maybe_free_model_hooks() | |
if not return_dict: | |
return (image, has_nsfw_concept) | |
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) |