llava-4bit / app.py
merve's picture
merve HF staff
Update app.py
3d139ce
raw
history blame
3.15 kB
import os
import string
import gradio as gr
import PIL.Image
import torch
from transformers import BitsAndBytesConfig, pipeline
import re
DESCRIPTION = "# LLaVA 🌋"
model_id = "llava-hf/llava-1.5-7b-hf"
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16
)
pipe = pipeline("image-to-text", model=model_id, model_kwargs={"quantization_config": quantization_config})
DESCRIPTION = "LLaVA is now available in transformers!"
def extract_response_pairs(text):
pattern = re.compile(r'(USER:.*?)ASSISTANT:(.*?)(?:$|USER:)', re.DOTALL)
matches = pattern.findall(text)
print(matches)
pairs = [(user.strip(), assistant.strip()) for user, assistant in matches]
return pairs
def postprocess_output(output: str) -> str:
if output and output[-1] not in string.punctuation:
output += "."
return output
def chat(image, text, max_length, history_chat):
prompt = " ".join(history_chat) + f"USER: <image>\n{text}\nASSISTANT:"
outputs = pipe(image, prompt=prompt,
generate_kwargs={
"max_length":max_length})
#output = postprocess_output(outputs[0]["generated_text"])
history_chat.append(outputs[0]["generated_text"])
chat_val = extract_response_pairs(" ".join(history_chat))
return chat_val, history_chat
css = """
#mkd {
height: 500px;
overflow: auto;
border: 1px solid #ccc;
}
"""
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
chatbot = gr.Chatbot(label="Chat", show_label=False)
with gr.Row():
image = gr.Image(type="pil")
text_input = gr.Text(label="Chat Input", show_label=False, max_lines=1, container=False)
history_chat = gr.State(value=[])
with gr.Row():
clear_chat_button = gr.Button("Clear")
chat_button = gr.Button("Submit", variant="primary")
with gr.Accordion(label="Advanced settings", open=False):
max_length = gr.Slider(
label="Max Length",
minimum=1,
maximum=200,
step=1,
value=100,
)
chat_output = [
chatbot,
history_chat
]
chat_button.click(fn=chat, inputs=[image,
text_input,
max_length,
history_chat],
outputs=chat_output,
api_name="Chat",
)
chat_inputs = [
image,
text_input,
max_length,
history_chat
]
text_input.submit(
fn=chat,
inputs=chat_inputs,
outputs=chat_output
).success(
fn=lambda: "",
outputs=chat_inputs,
queue=False,
api_name=False,
)
clear_chat_button.click(
fn=lambda: ([], []),
inputs=None,
outputs=[
chatbot,
history_chat
],
queue=False,
api_name="clear",
)
image.change(
fn=lambda: ([], []),
inputs=None,
outputs=[
chatbot,
history_chat
],
queue=False,
)
if __name__ == "__main__":
demo.queue(max_size=10).launch(debug=True)