import os import string import gradio as gr import PIL.Image import torch from transformers import BitsAndBytesConfig, pipeline import re DESCRIPTION = "# LLaVA 🌋" model_id = "llava-hf/llava-1.5-7b-hf" quantization_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_compute_dtype=torch.float16 ) pipe = pipeline("image-to-text", model=model_id, model_kwargs={"quantization_config": quantization_config}) def extract_response_pairs(text): pattern = re.compile(r'(USER:.*?)ASSISTANT:(.*?)(?:$|USER:)', re.DOTALL) matches = pattern.findall(text) print(matches) pairs = [(user.strip(), assistant.strip()) for user, assistant in matches] return pairs def postprocess_output(output: str) -> str: if output and output[-1] not in string.punctuation: output += "." return output def chat(image, text, max_length, history_chat): prompt = " ".join(history_chat) + f"USER: \n{text}\nASSISTANT:" outputs = pipe(image, prompt=prompt, generate_kwargs={ "max_length":max_length}) #output = postprocess_output(outputs[0]["generated_text"]) history_chat.append(outputs[0]["generated_text"]) chat_val = extract_response_pairs(" ".join(history_chat)) return chat_val, history_chat css = """ #mkd { height: 500px; overflow: auto; border: 1px solid #ccc; } """ with gr.Blocks(css="style.css") as demo: gr.Markdown(DESCRIPTION) gr.Markdown("LLaVA is now available in transformers with 4-bit quantization ⚡️") chatbot = gr.Chatbot(label="Chat", show_label=False) gr.Markdown("Input image and text to start chatting 👇 ") with gr.Row(): image = gr.Image(type="pil") text_input = gr.Text(label="Chat Input", max_lines=1) history_chat = gr.State(value=[]) with gr.Row(): clear_chat_button = gr.Button("Clear") chat_button = gr.Button("Submit", variant="primary") with gr.Accordion(label="Advanced settings", open=False): max_length = gr.Slider( label="Max Length", minimum=1, maximum=200, step=1, value=150, ) chat_output = [ chatbot, history_chat ] chat_button.click(fn=chat, inputs=[image, text_input, max_length, history_chat], outputs=chat_output, api_name="Chat", ) chat_inputs = [ image, text_input, max_length, history_chat ] text_input.submit( fn=chat, inputs=chat_inputs, outputs=chat_output ).success( fn=lambda: "", outputs=chat_inputs, queue=False, api_name=False, ) clear_chat_button.click( fn=lambda: ([], []), inputs=None, outputs=[ chatbot, history_chat ], queue=False, api_name="clear", ) image.change( fn=lambda: ([], []), inputs=None, outputs=[ chatbot, history_chat ], queue=False, ) if __name__ == "__main__": demo.queue(max_size=10).launch(debug=True)