Spaces:
Sleeping
Sleeping
LegacyLeague
commited on
Commit
•
b01849c
1
Parent(s):
0658f26
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import fastai
|
3 |
+
from fastai.vision import *
|
4 |
+
from fastai.utils.mem import *
|
5 |
+
from fastai.vision import open_image, load_learner, image, torch
|
6 |
+
import numpy as np4
|
7 |
+
import urllib.request
|
8 |
+
import PIL.Image
|
9 |
+
from io import BytesIO
|
10 |
+
import torchvision.transforms as T
|
11 |
+
from PIL import Image
|
12 |
+
import requests
|
13 |
+
from io import BytesIO
|
14 |
+
import fastai
|
15 |
+
from fastai.vision import *
|
16 |
+
from fastai.utils.mem import *
|
17 |
+
from fastai.vision import open_image, load_learner, image, torch
|
18 |
+
import numpy as np
|
19 |
+
import urllib.request
|
20 |
+
from urllib.request import urlretrieve
|
21 |
+
import PIL.Image
|
22 |
+
from io import BytesIO
|
23 |
+
import torchvision.transforms as T
|
24 |
+
import torchvision.transforms as tfms
|
25 |
+
|
26 |
+
class FeatureLoss(nn.Module):
|
27 |
+
def __init__(self, m_feat, layer_ids, layer_wgts):
|
28 |
+
super().__init__()
|
29 |
+
self.m_feat = m_feat
|
30 |
+
self.loss_features = [self.m_feat[i] for i in layer_ids]
|
31 |
+
self.hooks = hook_outputs(self.loss_features, detach=False)
|
32 |
+
self.wgts = layer_wgts
|
33 |
+
self.metric_names = ['pixel',] + [f'feat_{i}' for i in range(len(layer_ids))
|
34 |
+
] + [f'gram_{i}' for i in range(len(layer_ids))]
|
35 |
+
|
36 |
+
def make_features(self, x, clone=False):
|
37 |
+
self.m_feat(x)
|
38 |
+
return [(o.clone() if clone else o) for o in self.hooks.stored]
|
39 |
+
|
40 |
+
def forward(self, input, target):
|
41 |
+
out_feat = self.make_features(target, clone=True)
|
42 |
+
in_feat = self.make_features(input)
|
43 |
+
self.feat_losses = [base_loss(input,target)]
|
44 |
+
self.feat_losses += [base_loss(f_in, f_out)*w
|
45 |
+
for f_in, f_out, w in zip(in_feat, out_feat, self.wgts)]
|
46 |
+
self.feat_losses += [base_loss(gram_matrix(f_in), gram_matrix(f_out))*w**2 * 5e3
|
47 |
+
for f_in, f_out, w in zip(in_feat, out_feat, self.wgts)]
|
48 |
+
self.metrics = dict(zip(self.metric_names, self.feat_losses))
|
49 |
+
return sum(self.feat_losses)
|
50 |
+
|
51 |
+
def __del__(self): self.hooks.remove()
|
52 |
+
|
53 |
+
MODEL_URL = "https://www.dropbox.com/s/daf70v42oo93kym/Legacy_best.pkl?dl=1"
|
54 |
+
urllib.request.urlretrieve(MODEL_URL, "Legacy_best.pkl")
|
55 |
+
path = Path(".")
|
56 |
+
learn=load_learner(path, 'Legacy_best.pkl')
|
57 |
+
|
58 |
+
urlretrieve("https://s.hdnux.com/photos/01/07/33/71/18726490/5/1200x0.jpg","soccer1.jpg")
|
59 |
+
urlretrieve("https://cdn.vox-cdn.com/thumbor/4J8EqJBsS2qEQltIBuFOJWSn8dc=/1400x1400/filters:format(jpeg)/cdn.vox-cdn.com/uploads/chorus_asset/file/22466347/1312893179.jpg","soccer2.jpg")
|
60 |
+
urlretrieve("https://cdn.vox-cdn.com/thumbor/VHa7adj0Oie2Ao12RwKbs40i58s=/0x0:2366x2730/1200x800/filters:focal(1180x774:1558x1152)/cdn.vox-cdn.com/uploads/chorus_image/image/69526697/E5GnQUTWEAEK445.0.jpg","baseball.jpg")
|
61 |
+
urlretrieve("https://baseball.ca/uploads/images/content/Diodati(1).jpeg","baseball2.jpeg")
|
62 |
+
|
63 |
+
sample_images = [["soccer1.jpg"],
|
64 |
+
["soccer2.jpg"],
|
65 |
+
["baseball.jpg"],
|
66 |
+
["baseball2.jpeg"]]
|
67 |
+
|
68 |
+
|
69 |
+
def predict(input):
|
70 |
+
img_t = T.ToTensor()(input)
|
71 |
+
img_fast = Image(img_t)
|
72 |
+
p,img_hr,b = learn.predict(img_fast)
|
73 |
+
x = np.minimum(np.maximum(image2np(img_hr.data*255), 0), 255).astype(np.uint8)
|
74 |
+
img = PIL.Image.fromarray(x)
|
75 |
+
return img
|
76 |
+
|
77 |
+
gr_interface = gr.Interface(fn=predict, inputs=gr.inputs.Image(), outputs="image", title='Legacy-League',examples=sample_images).launch();
|