|
from __future__ import annotations |
|
from typing import Iterable |
|
import gradio as gr |
|
from gradio.themes.base import Base |
|
from gradio.themes.utils import colors, fonts, sizes |
|
from instruct_pipeline import InstructionTextGenerationPipeline |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline |
|
|
|
import torch |
|
|
|
theme = gr.themes.Monochrome( |
|
primary_hue="indigo", |
|
secondary_hue="blue", |
|
neutral_hue="slate", |
|
radius_size=gr.themes.sizes.radius_sm, |
|
font=[gr.themes.GoogleFont("Open Sans"), "ui-sans-serif", "system-ui", "sans-serif"], |
|
) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("databricks/dolly-v2-12b", padding_side="left") |
|
model = AutoModelForCausalLM.from_pretrained("databricks/dolly-v2-12b", device_map={"":torch.cuda.current_device()}, load_in_8bit=True) |
|
|
|
generate_text = InstructionTextGenerationPipeline(model=model, tokenizer=tokenizer) |
|
|
|
|
|
|
|
def generate(instruction): |
|
response = generate_text(instruction) |
|
result = "" |
|
for word in response.split(" "): |
|
result += word + " " |
|
yield result |
|
|
|
examples = [ |
|
"Instead of making a peanut butter and jelly sandwich, what else could I combine peanut butter with in a sandwich? Give five ideas", |
|
"How do I make a campfire?", |
|
"Write me a tweet about the release of Dolly 2.0, a new LLM", |
|
"Explain to me the difference between nuclear fission and fusion.", |
|
"I'm selling my Nikon D-750, write a short blurb for my ad." |
|
] |
|
|
|
def process_example(args): |
|
for x in generate(args): |
|
pass |
|
return x |
|
|
|
css = ".generating {visibility: hidden}" |
|
|
|
|
|
class SeafoamCustom(Base): |
|
def __init__( |
|
self, |
|
*, |
|
primary_hue: colors.Color | str = colors.emerald, |
|
secondary_hue: colors.Color | str = colors.blue, |
|
neutral_hue: colors.Color | str = colors.blue, |
|
spacing_size: sizes.Size | str = sizes.spacing_md, |
|
radius_size: sizes.Size | str = sizes.radius_md, |
|
font: fonts.Font |
|
| str |
|
| Iterable[fonts.Font | str] = ( |
|
fonts.GoogleFont("Quicksand"), |
|
"ui-sans-serif", |
|
"sans-serif", |
|
), |
|
font_mono: fonts.Font |
|
| str |
|
| Iterable[fonts.Font | str] = ( |
|
fonts.GoogleFont("IBM Plex Mono"), |
|
"ui-monospace", |
|
"monospace", |
|
), |
|
): |
|
super().__init__( |
|
primary_hue=primary_hue, |
|
secondary_hue=secondary_hue, |
|
neutral_hue=neutral_hue, |
|
spacing_size=spacing_size, |
|
radius_size=radius_size, |
|
font=font, |
|
font_mono=font_mono, |
|
) |
|
super().set( |
|
button_primary_background_fill="linear-gradient(90deg, *primary_300, *secondary_400)", |
|
button_primary_background_fill_hover="linear-gradient(90deg, *primary_200, *secondary_300)", |
|
button_primary_text_color="white", |
|
button_primary_background_fill_dark="linear-gradient(90deg, *primary_600, *secondary_800)", |
|
block_shadow="*shadow_drop_lg", |
|
button_shadow="*shadow_drop_lg", |
|
input_background_fill="zinc", |
|
input_border_color="*secondary_300", |
|
input_shadow="*shadow_drop", |
|
input_shadow_focus="*shadow_drop_lg", |
|
) |
|
|
|
|
|
seafoam = SeafoamCustom() |
|
|
|
|
|
with gr.Blocks(theme=seafoam, analytics_enabled=False, css=css) as demo: |
|
with gr.Column(): |
|
gr.Markdown( |
|
""" ## Dolly 2.0 |
|
|
|
Dolly 2.0 is a 12B parameter language model based on the EleutherAI pythia model family and fine-tuned exclusively on a new, high-quality human generated instruction following dataset, crowdsourced among Databricks employees. For more details, please refer to the [model card](https://huggingface.co/databricks/dolly-v2-12b) |
|
|
|
Type in the box below and click the button to generate answers to your most pressing questions! |
|
|
|
""" |
|
) |
|
gr.HTML("<p>You can duplicate this Space to run it privately without a queue for shorter queue times : <a style='display:inline-block' href='https://huggingface.co/spaces/RamAnanth1/Dolly-v2?duplicate=true'><img src='https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14' alt='Duplicate Space'></a> </p>") |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=3): |
|
instruction = gr.Textbox(placeholder="Enter your question here", label="Question", elem_id="q-input") |
|
|
|
with gr.Box(): |
|
gr.Markdown("**Answer**") |
|
output = gr.Markdown(elem_id="q-output") |
|
submit = gr.Button("Generate", variant="primary") |
|
gr.Examples( |
|
examples=examples, |
|
inputs=[instruction], |
|
cache_examples=False, |
|
fn=process_example, |
|
outputs=[output], |
|
) |
|
|
|
|
|
|
|
submit.click(generate, inputs=[instruction], outputs=[output]) |
|
instruction.submit(generate, inputs=[instruction], outputs=[output]) |
|
|
|
demo.queue(concurrency_count=16).launch(debug=True) |