Lenery RamAnanth1 commited on
Commit
c08e081
Β·
0 Parent(s):

Duplicate from RamAnanth1/Dolly-v2

Browse files

Co-authored-by: Ram Ananth <[email protected]>

Files changed (5) hide show
  1. .gitattributes +34 -0
  2. README.md +13 -0
  3. app.py +133 -0
  4. instruct_pipeline.py +158 -0
  5. requirements.txt +3 -0
.gitattributes ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tflite filter=lfs diff=lfs merge=lfs -text
29
+ *.tgz filter=lfs diff=lfs merge=lfs -text
30
+ *.wasm filter=lfs diff=lfs merge=lfs -text
31
+ *.xz filter=lfs diff=lfs merge=lfs -text
32
+ *.zip filter=lfs diff=lfs merge=lfs -text
33
+ *.zst filter=lfs diff=lfs merge=lfs -text
34
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: Dolly V2
3
+ emoji: 🐠
4
+ colorFrom: purple
5
+ colorTo: indigo
6
+ sdk: gradio
7
+ sdk_version: 3.24.1
8
+ app_file: app.py
9
+ pinned: false
10
+ duplicated_from: RamAnanth1/Dolly-v2
11
+ ---
12
+
13
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
app.py ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+ from typing import Iterable
3
+ import gradio as gr
4
+ from gradio.themes.base import Base
5
+ from gradio.themes.utils import colors, fonts, sizes
6
+ from instruct_pipeline import InstructionTextGenerationPipeline
7
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
8
+
9
+ import torch
10
+
11
+ theme = gr.themes.Monochrome(
12
+ primary_hue="indigo",
13
+ secondary_hue="blue",
14
+ neutral_hue="slate",
15
+ radius_size=gr.themes.sizes.radius_sm,
16
+ font=[gr.themes.GoogleFont("Open Sans"), "ui-sans-serif", "system-ui", "sans-serif"],
17
+ )
18
+
19
+ tokenizer = AutoTokenizer.from_pretrained("databricks/dolly-v2-12b", padding_side="left")
20
+ model = AutoModelForCausalLM.from_pretrained("databricks/dolly-v2-12b", device_map="auto", load_in_8bit=True)
21
+
22
+ generate_text = InstructionTextGenerationPipeline(model=model, tokenizer=tokenizer)
23
+
24
+ #generate_text = pipeline(model="databricks/dolly-v2-12b", torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto")
25
+
26
+ def generate(instruction):
27
+ response = generate_text(instruction)
28
+ result = ""
29
+ for word in response.split(" "):
30
+ result += word + " "
31
+ yield result
32
+
33
+ examples = [
34
+ "Instead of making a peanut butter and jelly sandwich, what else could I combine peanut butter with in a sandwich? Give five ideas",
35
+ "How do I make a campfire?",
36
+ "Write me a tweet about the release of Dolly 2.0, a new LLM",
37
+ "Explain to me the difference between nuclear fission and fusion.",
38
+ "I'm selling my Nikon D-750, write a short blurb for my ad."
39
+ ]
40
+
41
+ def process_example(args):
42
+ for x in generate(args):
43
+ pass
44
+ return x
45
+
46
+ css = ".generating {visibility: hidden}"
47
+
48
+ # Based on the gradio theming guide and borrowed from https://huggingface.co/spaces/shivi/dolly-v2-demo
49
+ class SeafoamCustom(Base):
50
+ def __init__(
51
+ self,
52
+ *,
53
+ primary_hue: colors.Color | str = colors.emerald,
54
+ secondary_hue: colors.Color | str = colors.blue,
55
+ neutral_hue: colors.Color | str = colors.blue,
56
+ spacing_size: sizes.Size | str = sizes.spacing_md,
57
+ radius_size: sizes.Size | str = sizes.radius_md,
58
+ font: fonts.Font
59
+ | str
60
+ | Iterable[fonts.Font | str] = (
61
+ fonts.GoogleFont("Quicksand"),
62
+ "ui-sans-serif",
63
+ "sans-serif",
64
+ ),
65
+ font_mono: fonts.Font
66
+ | str
67
+ | Iterable[fonts.Font | str] = (
68
+ fonts.GoogleFont("IBM Plex Mono"),
69
+ "ui-monospace",
70
+ "monospace",
71
+ ),
72
+ ):
73
+ super().__init__(
74
+ primary_hue=primary_hue,
75
+ secondary_hue=secondary_hue,
76
+ neutral_hue=neutral_hue,
77
+ spacing_size=spacing_size,
78
+ radius_size=radius_size,
79
+ font=font,
80
+ font_mono=font_mono,
81
+ )
82
+ super().set(
83
+ button_primary_background_fill="linear-gradient(90deg, *primary_300, *secondary_400)",
84
+ button_primary_background_fill_hover="linear-gradient(90deg, *primary_200, *secondary_300)",
85
+ button_primary_text_color="white",
86
+ button_primary_background_fill_dark="linear-gradient(90deg, *primary_600, *secondary_800)",
87
+ block_shadow="*shadow_drop_lg",
88
+ button_shadow="*shadow_drop_lg",
89
+ input_background_fill="zinc",
90
+ input_border_color="*secondary_300",
91
+ input_shadow="*shadow_drop",
92
+ input_shadow_focus="*shadow_drop_lg",
93
+ )
94
+
95
+
96
+ seafoam = SeafoamCustom()
97
+
98
+
99
+ with gr.Blocks(theme=seafoam, analytics_enabled=False, css=css) as demo:
100
+ with gr.Column():
101
+ gr.Markdown(
102
+ """ ## Dolly 2.0
103
+
104
+ Dolly 2.0 is a 12B parameter language model based on the EleutherAI pythia model family and fine-tuned exclusively on a new, high-quality human generated instruction following dataset, crowdsourced among Databricks employees. For more details, please refer to the [model card](https://huggingface.co/databricks/dolly-v2-12b)
105
+
106
+ Type in the box below and click the button to generate answers to your most pressing questions!
107
+
108
+ """
109
+ )
110
+ gr.HTML("<p>You can duplicate this Space to run it privately without a queue for shorter queue times : <a style='display:inline-block' href='https://huggingface.co/spaces/RamAnanth1/Dolly-v2?duplicate=true'><img src='https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14' alt='Duplicate Space'></a> </p>")
111
+
112
+ with gr.Row():
113
+ with gr.Column(scale=3):
114
+ instruction = gr.Textbox(placeholder="Enter your question here", label="Question", elem_id="q-input")
115
+
116
+ with gr.Box():
117
+ gr.Markdown("**Answer**")
118
+ output = gr.Markdown(elem_id="q-output")
119
+ submit = gr.Button("Generate", variant="primary")
120
+ gr.Examples(
121
+ examples=examples,
122
+ inputs=[instruction],
123
+ cache_examples=False,
124
+ fn=process_example,
125
+ outputs=[output],
126
+ )
127
+
128
+
129
+
130
+ submit.click(generate, inputs=[instruction], outputs=[output])
131
+ instruction.submit(generate, inputs=[instruction], outputs=[output])
132
+
133
+ demo.queue(concurrency_count=16).launch(debug=True)
instruct_pipeline.py ADDED
@@ -0,0 +1,158 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+ import re
3
+
4
+ import numpy as np
5
+ from transformers import Pipeline, PreTrainedTokenizer
6
+
7
+ logger = logging.getLogger(__name__)
8
+
9
+ INSTRUCTION_KEY = "### Instruction:"
10
+ RESPONSE_KEY = "### Response:"
11
+ END_KEY = "### End"
12
+ INTRO_BLURB = (
13
+ "Below is an instruction that describes a task. Write a response that appropriately completes the request."
14
+ )
15
+
16
+ # This is the prompt that is used for generating responses using an already trained model. It ends with the response
17
+ # key, where the job of the model is to provide the completion that follows it (i.e. the response itself).
18
+ PROMPT_FOR_GENERATION_FORMAT = """{intro}
19
+ {instruction_key}
20
+ {instruction}
21
+ {response_key}
22
+ """.format(
23
+ intro=INTRO_BLURB,
24
+ instruction_key=INSTRUCTION_KEY,
25
+ instruction="{instruction}",
26
+ response_key=RESPONSE_KEY,
27
+ )
28
+
29
+
30
+ def get_special_token_id(tokenizer: PreTrainedTokenizer, key: str) -> int:
31
+ """Gets the token ID for a given string that has been added to the tokenizer as a special token.
32
+ When training, we configure the tokenizer so that the sequences like "### Instruction:" and "### End" are
33
+ treated specially and converted to a single, new token. This retrieves the token ID each of these keys map to.
34
+ Args:
35
+ tokenizer (PreTrainedTokenizer): the tokenizer
36
+ key (str): the key to convert to a single token
37
+ Raises:
38
+ RuntimeError: if more than one ID was generated
39
+ Returns:
40
+ int: the token ID for the given key
41
+ """
42
+ token_ids = tokenizer.encode(key)
43
+ if len(token_ids) > 1:
44
+ raise ValueError(f"Expected only a single token for '{key}' but found {token_ids}")
45
+ return token_ids[0]
46
+
47
+
48
+ class InstructionTextGenerationPipeline(Pipeline):
49
+ def __init__(
50
+ self, *args, do_sample: bool = True, max_new_tokens: int = 256, top_p: float = 0.92, top_k: int = 0, **kwargs
51
+ ):
52
+ super().__init__(*args, do_sample=do_sample, max_new_tokens=max_new_tokens, top_p=top_p, top_k=top_k, **kwargs)
53
+
54
+ def _sanitize_parameters(self, return_instruction_text=False, **generate_kwargs):
55
+ preprocess_params = {}
56
+
57
+ # newer versions of the tokenizer configure the response key as a special token. newer versions still may
58
+ # append a newline to yield a single token. find whatever token is configured for the response key.
59
+ tokenizer_response_key = next(
60
+ (token for token in self.tokenizer.additional_special_tokens if token.startswith(RESPONSE_KEY)), None
61
+ )
62
+
63
+ response_key_token_id = None
64
+ end_key_token_id = None
65
+ if tokenizer_response_key:
66
+ try:
67
+ response_key_token_id = get_special_token_id(self.tokenizer, tokenizer_response_key)
68
+ end_key_token_id = get_special_token_id(self.tokenizer, END_KEY)
69
+
70
+ # Ensure generation stops once it generates "### End"
71
+ generate_kwargs["eos_token_id"] = end_key_token_id
72
+ except ValueError:
73
+ pass
74
+
75
+ forward_params = generate_kwargs
76
+ postprocess_params = {
77
+ "response_key_token_id": response_key_token_id,
78
+ "end_key_token_id": end_key_token_id,
79
+ "return_instruction_text": return_instruction_text,
80
+ }
81
+
82
+ return preprocess_params, forward_params, postprocess_params
83
+
84
+ def preprocess(self, instruction_text, **generate_kwargs):
85
+ prompt_text = PROMPT_FOR_GENERATION_FORMAT.format(instruction=instruction_text)
86
+ inputs = self.tokenizer(
87
+ prompt_text,
88
+ return_tensors="pt",
89
+ )
90
+ inputs["prompt_text"] = prompt_text
91
+ inputs["instruction_text"] = instruction_text
92
+ return inputs
93
+
94
+ def _forward(self, model_inputs, **generate_kwargs):
95
+ input_ids = model_inputs["input_ids"]
96
+ attention_mask = model_inputs.get("attention_mask", None)
97
+ generated_sequence = self.model.generate(
98
+ input_ids=input_ids.to(self.model.device),
99
+ attention_mask=attention_mask,
100
+ pad_token_id=self.tokenizer.pad_token_id,
101
+ **generate_kwargs,
102
+ )[0].cpu()
103
+ instruction_text = model_inputs.pop("instruction_text")
104
+ return {"generated_sequence": generated_sequence, "input_ids": input_ids, "instruction_text": instruction_text}
105
+
106
+ def postprocess(self, model_outputs, response_key_token_id, end_key_token_id, return_instruction_text):
107
+ sequence = model_outputs["generated_sequence"]
108
+ instruction_text = model_outputs["instruction_text"]
109
+
110
+ # The response will be set to this variable if we can identify it.
111
+ decoded = None
112
+
113
+ # If we have token IDs for the response and end, then we can find the tokens and only decode between them.
114
+ if response_key_token_id and end_key_token_id:
115
+ # Find where "### Response:" is first found in the generated tokens. Considering this is part of the
116
+ # prompt, we should definitely find it. We will return the tokens found after this token.
117
+ response_pos = None
118
+ response_positions = np.where(sequence == response_key_token_id)[0]
119
+ if len(response_positions) == 0:
120
+ logger.warn(f"Could not find response key {response_key_token_id} in: {sequence}")
121
+ else:
122
+ response_pos = response_positions[0]
123
+
124
+ if response_pos:
125
+ # Next find where "### End" is located. The model has been trained to end its responses with this
126
+ # sequence (or actually, the token ID it maps to, since it is a special token). We may not find
127
+ # this token, as the response could be truncated. If we don't find it then just return everything
128
+ # to the end. Note that even though we set eos_token_id, we still see the this token at the end.
129
+ end_pos = None
130
+ end_positions = np.where(sequence == end_key_token_id)[0]
131
+ if len(end_positions) > 0:
132
+ end_pos = end_positions[0]
133
+
134
+ decoded = self.tokenizer.decode(sequence[response_pos + 1 : end_pos]).strip()
135
+ else:
136
+ # Otherwise we'll decode everything and use a regex to find the response and end.
137
+
138
+ fully_decoded = self.tokenizer.decode(sequence)
139
+
140
+ # The response appears after "### Response:". The model has been trained to append "### End" at the
141
+ # end.
142
+ m = re.search(r"#+\s*Response:\s*(.+?)#+\s*End", fully_decoded, flags=re.DOTALL)
143
+
144
+ if m:
145
+ decoded = m.group(1).strip()
146
+ else:
147
+ # The model might not generate the "### End" sequence before reaching the max tokens. In this case,
148
+ # return everything after "### Response:".
149
+ m = re.search(r"#+\s*Response:\s*(.+)", fully_decoded, flags=re.DOTALL)
150
+ if m:
151
+ decoded = m.group(1).strip()
152
+ else:
153
+ logger.warn(f"Failed to find response in:\n{fully_decoded}")
154
+
155
+ if return_instruction_text:
156
+ return {"instruction_text": instruction_text, "generated_text": decoded}
157
+
158
+ return decoded
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ accelerate>=0.12.0
2
+ transformers[torch]==4.25.1
3
+ bitsandbytes