Spaces:
Sleeping
Sleeping
File size: 5,037 Bytes
cc7235c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
import gradio as gr
import os, os.path as osp
import time
import glob
import cv2
from PIL import Image
import hashlib
import shutil
import os, sys, os.path as osp
import csv
import random
import json
from huggingface_hub import HfApi, repo_exists, file_exists
from huggingface_hub.hf_api import CommitOperationAdd
def calc_file_md5(fpath):
with open(fpath, "rb") as f:
file_hash = hashlib.md5()
while chunk := f.read(8192):
file_hash.update(chunk)
return file_hash.hexdigest()[:6]
finfo = [
json.load(open("f1/coyo25m-0-000000.tar.json")),
json.load(open("f2/coyo25m-0-000000.tar.json")),
json.load(open("f3/coyo25m-0-000000.tar.json")),
json.load(open("f3/coyo25m-0-000000.tar.json")),
]
keys = list(finfo[0].keys())
api = HfApi()
def get_random_captino(k):
indexs = random.sample(list(range(5)), k=2)
output = []
idxs = []
for i in indexs:
if i == 4:
output.append(finfo[0][k]["orig_text"])
else:
output.append(finfo[i][k]["output"])
idxs.append(i)
return output, idxs
def load_image(idx):
k = keys[idx]
infos, indexs = get_random_captino(k)
return k, f"{k}", infos[0], infos[1], str(indexs)
def random_image(idx):
k = random.choice(keys)
index = keys.index(k)
infos, indexs = get_random_captino(k)
return k, index, f"{k}", infos[0], infos[1], str(indexs)
def save_labeling(url, cap1, cap2, labeler, indexs, preference="left"):
os.makedirs("flagged", exist_ok=True)
output_info = {
"cap1": cap1,
"cap2": cap2,
"preference": preference,
"indexs": indexs,
"labeler": labeler,
}
# print(url)
lid = (
labeler.replace(" ", "_").replace("@", "_").replace(".", "_").replace("/", "-")
)
output_path = osp.join(f"flagged", url.replace("/", "--") + f".{lid}.json")
with open(output_path, "w") as fp:
json.dump(output_info, fp, indent=2)
if "RUNNING_ON_SPACE" in os.environ:
if not api.repo_exists(
"Efficient-Large-Model/VILA-S-Human-Test", repo_type="dataset"
):
api.create_repo(
"Efficient-Large-Model/VILA-S-Human-Test",
repo_type="dataset",
private=True,
)
operation = CommitOperationAdd(
path_or_fileobj=output_path,
path_in_repo=osp.basename(output_path),
)
print("uploading ", output_path)
commit_info = api.create_commit(
repo_id="Efficient-Large-Model/VILA-S-Human-Test",
repo_type="dataset",
operations=[
operation,
],
commit_message=f"update {output_path}",
)
output_path = commit_info
return output_path + "\n" + json.dumps(output_info, indent=2)
with gr.Blocks(
title="VILA Video Benchmark",
) as demo:
with gr.Row():
slider = gr.Slider(maximum=len(keys), label="Video Index", value=0)
with gr.Row():
with gr.Column(scale=4):
image_input = gr.Image(
label="Video Preview ",
height=360,
value="https://github.com/NVlabs/VILA/raw/main/demo_images/vila-logo.jpg",
)
with gr.Column(scale=1):
random_img = gr.Button(value="Random Image")
labeler = gr.Text(
value="placeholder",
label="Labeler ID (your name or email)",
interactive=True,
)
logging = gr.Markdown(label="Logging info")
with gr.Row():
btn_left = gr.Button("Left better")
btn_tie = gr.Button("tie")
btn_right = gr.Button("Right better")
with gr.Row():
vcap1 = gr.Textbox(label="Anoymous Caption 1")
vcap2 = gr.Textbox(label="Anoymous Caption 2")
cap_res = gr.Textbox(label="Caption Saving Results")
tmp_info = gr.Textbox(label="Temp Info", visible=False)
from functools import partial
btn_left.click(
partial(save_labeling, preference="left"),
inputs=[logging, vcap1, vcap2, labeler, tmp_info],
outputs=[cap_res],
)
btn_tie.click(
partial(save_labeling, preference="tie"),
inputs=[logging, vcap1, vcap2, labeler, tmp_info],
outputs=[cap_res],
)
btn_right.click(
partial(save_labeling, preference="right"),
inputs=[logging, vcap1, vcap2, labeler, tmp_info],
outputs=[cap_res],
)
slider.change(
load_image,
inputs=[slider],
outputs=[image_input, logging, vcap1, vcap2, tmp_info],
)
random_img.click(
random_image,
inputs=[random_img],
outputs=[image_input, slider, logging, vcap1, vcap2, tmp_info],
)
# btn_save.click(
# save_labeling,
# inputs=[video_path, _vtag, _vcap, vtag, vcap, uid],
# outputs=[
# cap_res,
# ],
# )
demo.queue()
if __name__ == "__main__":
demo.launch()
|