Spaces:
Sleeping
Sleeping
File size: 5,998 Bytes
cc7235c 371d3fb cc7235c 371d3fb cc7235c 5c4d97a 371d3fb cc7235c 5c4d97a cc7235c 5c4d97a cc7235c 371d3fb cc7235c 371d3fb cc7235c 371d3fb cc7235c 371d3fb cc7235c 371d3fb cc7235c 371d3fb cc7235c 371d3fb 5c4d97a cc7235c 5c4d97a cc7235c 0676163 5c4d97a cc7235c 371d3fb cc7235c 371d3fb 5c4d97a 371d3fb 5c4d97a 371d3fb cc7235c 5c4d97a 371d3fb 5c4d97a cc7235c 371d3fb cc7235c 371d3fb cc7235c 371d3fb cc7235c 371d3fb cc7235c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
import gradio as gr
import os, os.path as osp
import time
import glob
import cv2
from PIL import Image
import hashlib
import shutil
import os, sys, os.path as osp
import csv
import random
import json
from huggingface_hub import HfApi, repo_exists, file_exists
from huggingface_hub.hf_api import CommitOperationAdd
def calc_file_md5(fpath, max_digits=6):
with open(fpath, "rb") as f:
file_hash = hashlib.md5()
while chunk := f.read(8192):
file_hash.update(chunk)
return file_hash.hexdigest()[:max_digits]
def string_to_md5(string, max_digits=6):
return hashlib.md5(string.encode()).hexdigest()[:max_digits]
finfo = [
json.load(open("f1/coyo25m-0-000000.tar.json")),
json.load(open("f2/coyo25m-0-000000.tar.json")),
json.load(open("f3/coyo25m-0-000000.tar.json")),
json.load(open("f3/coyo25m-0-000000.tar.json")),
]
keys = list(finfo[0].keys())
if not os.path.exists("keys.txt"):
with open("keys.txt", "w") as f:
f.write("\n".join(keys))
else:
with open("keys.txt", "r") as f:
keys = list(f.read().split("\n"))
api = HfApi()
def get_random_caption(k):
indexs = random.sample(list(range(5)), k=2)
output = []
idxs = []
for i in indexs:
if i == 4:
output.append(finfo[0][k]["orig_text"])
else:
output.append(finfo[i][k]["output"])
idxs.append(i)
return output, idxs
def load_image(idx):
k = keys[idx]
infos, indexs = get_random_caption(k)
return k, f"{k}", infos[0], infos[1], str(indexs), None, None
def random_image(idx):
k = random.choice(keys)
index = keys.index(k)
infos, indexs = get_random_caption(k)
return k, index, f"{k}", infos[0], infos[1], str(indexs), None, None
def save_labeling(url, cap1, cap2, labeler, caption_source, rate1, rate2):
os.makedirs("flagged", exist_ok=True)
output_info = {
"url": url,
"cap1": cap1,
"cap2": cap2,
"rate-details": rate1,
"rate-halluication": rate2,
"caption_source": caption_source,
"labeler": labeler,
}
# print(url)
lid = (
labeler.replace(" ", "_").replace("@", "_").replace(".", "_").replace("/", "-")
)
# output_path = osp.join(f"flagged", url.replace("/", "--") + f".{lid}.json")
output_path = osp.join(
f"flagged", "md5-" + string_to_md5(url, max_digits=12) + f".{lid}.json"
)
with open(output_path, "w") as fp:
json.dump(output_info, fp, indent=2)
if "RUNNING_ON_SPACE" in os.environ:
if not api.repo_exists(
"Efficient-Large-Model/VILA-S-Human-Test", repo_type="dataset"
):
api.create_repo(
"Efficient-Large-Model/VILA-S-Human-Test",
repo_type="dataset",
private=True,
)
operation = CommitOperationAdd(
path_or_fileobj=output_path,
path_in_repo=osp.basename(output_path),
)
print("uploading ", output_path)
commit_info = api.create_commit(
repo_id="Efficient-Large-Model/VILA-S-Human-Test",
repo_type="dataset",
operations=[
operation,
],
commit_message=f"update {output_path}",
)
output_path = commit_info
return output_path + "\n" + json.dumps(output_info, indent=2)
with gr.Blocks(
title="VILA Video Benchmark",
) as demo:
with gr.Row():
with gr.Column(scale=2):
image_input = gr.Image(
label="Video Preview ",
# height=320,
# width=480,
value="https://github.com/NVlabs/VILA/raw/main/demo_images/vila-logo.jpg",
)
with gr.Column(scale=1):
slider = gr.Slider(maximum=len(keys), label="Video Index", value=0)
gr.Markdown("## Step-0, put in your name")
labeler = gr.Text(
value="placeholder",
label="Labeler ID (your name or email)",
interactive=True,
)
logging = gr.Markdown(label="Logging info")
with gr.Row():
with gr.Column():
gr.Markdown("## Step-1, randomly pick a image")
random_img = gr.Button(value="Random Image", variant="primary")
with gr.Column(scale=3):
gr.Markdown("## Step-2, randomly pick a image")
with gr.Row():
r1 = gr.Radio(
choices=["Left better", "Tie", "Right better"], label="Detailness"
)
r2 = gr.Radio(
choices=["Left better", "Tie", "Right better"], label="Halluciation"
)
with gr.Column():
gr.Markdown("## Step-3, submit the results")
submit = gr.Button(value="submit", variant="stop")
with gr.Row():
gr.Markdown(
"### Warning: if you find two caption identical, please skip and evaluate next"
)
with gr.Row():
vcap1 = gr.Textbox(label="Anoymous Caption 1")
vcap2 = gr.Textbox(label="Anoymous Caption 2")
cap_res = gr.Textbox(label="Caption Saving Results")
caption_source = gr.Textbox(label="Temp Info", visible=False)
from functools import partial
submit.click(
save_labeling,
inputs=[logging, vcap1, vcap2, labeler, caption_source, r1, r2],
outputs=[cap_res],
)
slider.change(
load_image,
inputs=[slider],
outputs=[image_input, logging, vcap1, vcap2, caption_source, r1, r2],
)
random_img.click(
random_image,
inputs=[random_img],
outputs=[image_input, slider, logging, vcap1, vcap2, caption_source, r1, r2],
)
# btn_save.click(
# save_labeling,
# inputs=[video_path, _vtag, _vcap, vtag, vcap, uid],
# outputs=[
# cap_res,
# ],
# )
demo.queue()
if __name__ == "__main__":
demo.launch()
|