import gradio as gr import os, os.path as osp import time import glob import cv2 from PIL import Image import hashlib import shutil import os, sys, os.path as osp import csv import random import json from huggingface_hub import HfApi, repo_exists, file_exists from huggingface_hub.hf_api import CommitOperationAdd def calc_file_md5(fpath): with open(fpath, "rb") as f: file_hash = hashlib.md5() while chunk := f.read(8192): file_hash.update(chunk) return file_hash.hexdigest()[:6] finfo = [ json.load(open("f1/coyo25m-0-000000.tar.json")), json.load(open("f2/coyo25m-0-000000.tar.json")), json.load(open("f3/coyo25m-0-000000.tar.json")), json.load(open("f3/coyo25m-0-000000.tar.json")), ] keys = list(finfo[0].keys()) api = HfApi() def get_random_captino(k): indexs = random.sample(list(range(5)), k=2) output = [] idxs = [] for i in indexs: if i == 4: output.append(finfo[0][k]["orig_text"]) else: output.append(finfo[i][k]["output"]) idxs.append(i) return output, idxs def load_image(idx): k = keys[idx] infos, indexs = get_random_captino(k) return k, f"{k}", infos[0], infos[1], str(indexs) def random_image(idx): k = random.choice(keys) index = keys.index(k) infos, indexs = get_random_captino(k) return k, index, f"{k}", infos[0], infos[1], str(indexs) def save_labeling(url, cap1, cap2, labeler, indexs, preference="left"): os.makedirs("flagged", exist_ok=True) output_info = { "cap1": cap1, "cap2": cap2, "preference": preference, "indexs": indexs, "labeler": labeler, } # print(url) lid = ( labeler.replace(" ", "_").replace("@", "_").replace(".", "_").replace("/", "-") ) output_path = osp.join(f"flagged", url.replace("/", "--") + f".{lid}.json") with open(output_path, "w") as fp: json.dump(output_info, fp, indent=2) if "RUNNING_ON_SPACE" in os.environ: if not api.repo_exists( "Efficient-Large-Model/VILA-S-Human-Test", repo_type="dataset" ): api.create_repo( "Efficient-Large-Model/VILA-S-Human-Test", repo_type="dataset", private=True, ) operation = CommitOperationAdd( path_or_fileobj=output_path, path_in_repo=osp.basename(output_path), ) print("uploading ", output_path) commit_info = api.create_commit( repo_id="Efficient-Large-Model/VILA-S-Human-Test", repo_type="dataset", operations=[ operation, ], commit_message=f"update {output_path}", ) output_path = commit_info return output_path + "\n" + json.dumps(output_info, indent=2) with gr.Blocks( title="VILA Video Benchmark", ) as demo: with gr.Row(): slider = gr.Slider(maximum=len(keys), label="Video Index", value=0) with gr.Row(): with gr.Column(scale=4): image_input = gr.Image( label="Video Preview ", height=360, value="https://github.com/NVlabs/VILA/raw/main/demo_images/vila-logo.jpg", ) with gr.Column(scale=1): random_img = gr.Button(value="Random Image") labeler = gr.Text( value="placeholder", label="Labeler ID (your name or email)", interactive=True, ) logging = gr.Markdown(label="Logging info") with gr.Row(): btn_left = gr.Button("Left better") btn_tie = gr.Button("tie") btn_right = gr.Button("Right better") with gr.Row(): vcap1 = gr.Textbox(label="Anoymous Caption 1") vcap2 = gr.Textbox(label="Anoymous Caption 2") cap_res = gr.Textbox(label="Caption Saving Results") tmp_info = gr.Textbox(label="Temp Info", visible=False) from functools import partial btn_left.click( partial(save_labeling, preference="left"), inputs=[logging, vcap1, vcap2, labeler, tmp_info], outputs=[cap_res], ) btn_tie.click( partial(save_labeling, preference="tie"), inputs=[logging, vcap1, vcap2, labeler, tmp_info], outputs=[cap_res], ) btn_right.click( partial(save_labeling, preference="right"), inputs=[logging, vcap1, vcap2, labeler, tmp_info], outputs=[cap_res], ) slider.change( load_image, inputs=[slider], outputs=[image_input, logging, vcap1, vcap2, tmp_info], ) random_img.click( random_image, inputs=[random_img], outputs=[image_input, slider, logging, vcap1, vcap2, tmp_info], ) # btn_save.click( # save_labeling, # inputs=[video_path, _vtag, _vcap, vtag, vcap, uid], # outputs=[ # cap_res, # ], # ) demo.queue() if __name__ == "__main__": demo.launch()