import gradio as gr import os, os.path as osp import time import glob import cv2 from PIL import Image import hashlib import shutil import os, sys, os.path as osp import csv import random import json from huggingface_hub import HfApi, repo_exists, file_exists from huggingface_hub.hf_api import CommitOperationAdd def calc_file_md5(fpath, max_digits=6): with open(fpath, "rb") as f: file_hash = hashlib.md5() while chunk := f.read(8192): file_hash.update(chunk) return file_hash.hexdigest()[:max_digits] def string_to_md5(string, max_digits=6): return hashlib.md5(string.encode()).hexdigest()[:max_digits] finfo = [ json.load(open("f1/coyo25m-0-000000.tar.json")), json.load(open("f2/coyo25m-0-000000.tar.json")), json.load(open("f3/coyo25m-0-000000.tar.json")), json.load(open("f3/coyo25m-0-000000.tar.json")), ] keys = list(finfo[0].keys()) if not os.path.exists("keys.txt"): with open("keys.txt", "w") as f: f.write("\n".join(keys)) else: with open("keys.txt", "r") as f: keys = list(f.read().split("\n")) api = HfApi() def get_random_caption(k): indexs = random.sample(list(range(5)), k=2) output = [] idxs = [] for i in indexs: if i == 4: output.append(finfo[0][k]["orig_text"]) else: output.append(finfo[i][k]["output"]) idxs.append(i) return output, idxs def load_image(idx): k = keys[idx] infos, indexs = get_random_caption(k) return k, f"{k}", infos[0], infos[1], str(indexs), None, None def random_image(idx): k = random.choice(keys) index = keys.index(k) infos, indexs = get_random_caption(k) return k, index, f"{k}", infos[0], infos[1], str(indexs), None, None def save_labeling(url, cap1, cap2, labeler, caption_source, rate1, rate2): os.makedirs("flagged", exist_ok=True) output_info = { "url": url, "cap1": cap1, "cap2": cap2, "rate-details": rate1, "rate-halluication": rate2, "caption_source": caption_source, "labeler": labeler, } # print(url) lid = ( labeler.replace(" ", "_").replace("@", "_").replace(".", "_").replace("/", "-") ) # output_path = osp.join(f"flagged", url.replace("/", "--") + f".{lid}.json") output_path = osp.join( f"flagged", "md5-" + string_to_md5(url, max_digits=12) + f".{lid}.json" ) with open(output_path, "w") as fp: json.dump(output_info, fp, indent=2) if "RUNNING_ON_SPACE" in os.environ: if not api.repo_exists( "Efficient-Large-Model/VILA-S-Human-Test", repo_type="dataset" ): api.create_repo( "Efficient-Large-Model/VILA-S-Human-Test", repo_type="dataset", private=True, ) operation = CommitOperationAdd( path_or_fileobj=output_path, path_in_repo=osp.basename(output_path), ) print("uploading ", output_path) commit_info = api.create_commit( repo_id="Efficient-Large-Model/VILA-S-Human-Test", repo_type="dataset", operations=[ operation, ], commit_message=f"update {output_path}", ) output_path = commit_info return output_path + "\n" + json.dumps(output_info, indent=2) with gr.Blocks( title="VILA Video Benchmark", ) as demo: with gr.Row(): with gr.Column(scale=2): image_input = gr.Image( label="Video Preview ", # height=320, # width=480, value="https://github.com/NVlabs/VILA/raw/main/demo_images/vila-logo.jpg", ) with gr.Column(scale=1): slider = gr.Slider(maximum=len(keys), label="Video Index", value=0) gr.Markdown("## Step-0, put in your name") labeler = gr.Text( value="placeholder", label="Labeler ID (your name or email)", interactive=True, ) logging = gr.Markdown(label="Logging info") with gr.Row(): with gr.Column(): gr.Markdown("## Step-1, randomly pick a image") random_img = gr.Button(value="Random Image", variant="primary") with gr.Column(scale=3): gr.Markdown("## Step-2, randomly pick a image") with gr.Row(): r1 = gr.Radio( choices=["Left better", "Tie", "Right better"], label="Detailness" ) r2 = gr.Radio( choices=["Left better", "Tie", "Right better"], label="Halluciation" ) with gr.Column(): gr.Markdown("## Step-3, submit the results") submit = gr.Button(value="submit", variant="stop") with gr.Row(): gr.Markdown( "### Warning: if you find two caption identical, please skip and evaluate next" ) with gr.Row(): vcap1 = gr.Textbox(label="Anoymous Caption 1") vcap2 = gr.Textbox(label="Anoymous Caption 2") cap_res = gr.Textbox(label="Caption Saving Results") caption_source = gr.Textbox(label="Temp Info", visible=False) from functools import partial submit.click( save_labeling, inputs=[logging, vcap1, vcap2, labeler, caption_source, r1, r2], outputs=[cap_res], ) slider.change( load_image, inputs=[slider], outputs=[image_input, logging, vcap1, vcap2, caption_source, r1, r2], ) random_img.click( random_image, inputs=[random_img], outputs=[image_input, slider, logging, vcap1, vcap2, caption_source, r1, r2], ) # btn_save.click( # save_labeling, # inputs=[video_path, _vtag, _vcap, vtag, vcap, uid], # outputs=[ # cap_res, # ], # ) demo.queue() if __name__ == "__main__": demo.launch()