Spaces:
Runtime error
Runtime error
import os | |
os.environ['CUDA_LAUNCH_BLOCKING'] = '1' | |
import torch | |
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
def init_model(): | |
model = AutoModelForCausalLM.from_pretrained("Linly-AI/Chinese-LLaMA-2-7B-hf", device_map="cuda:0", torch_dtype=torch.float16, trust_remote_code=True) | |
tokenizer = AutoTokenizer.from_pretrained("Linly-AI/Chinese-LLaMA-2-7B-hf", use_fast=False, trust_remote_code=True) | |
return model, tokenizer | |
def chat(prompt, top_k, temperature): | |
prompt = f"### Instruction:{prompt.strip()} ### Response:" | |
inputs = tokenizer(prompt, return_tensors="pt").to("cuda:0") | |
generate_ids = model.generate(inputs.input_ids, do_sample=True, max_new_tokens=2048, top_k=int(top_k), top_p=0.84, temperature=float(temperature), repetition_penalty=1.15, eos_token_id=2, bos_token_id=1, pad_token_id=0) | |
response = tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] | |
response = response.lstrip(prompt) | |
print('-log: ',prompt, response) | |
return response | |
if __name__ == '__main__': | |
model, tokenizer = init_model() | |
demo = gr.Interface( | |
fn=chat, | |
inputs=["text", gr.Slider(1, 60, value=10, step=1), gr.Slider(0.1, 2.0, value=1.0, step=0.1)], | |
outputs="text", | |
) | |
demo.launch() | |