Spaces:
Running
on
Zero
Running
on
Zero
File size: 1,772 Bytes
3040ac4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
"""
Code for loading models trained with EigenPlaces (or CosPlace) as a global
features extractor for geolocalization through image retrieval.
Multiple models are available with different backbones. Below is a summary of
models available (backbone : list of available output descriptors
dimensionality). For example you can use a model based on a ResNet50 with
descriptors dimensionality 1024.
EigenPlaces trained models:
ResNet18: [ 256, 512]
ResNet50: [128, 256, 512, 2048]
ResNet101: [128, 256, 512, 2048]
VGG16: [ 512]
CosPlace trained models:
ResNet18: [32, 64, 128, 256, 512]
ResNet50: [32, 64, 128, 256, 512, 1024, 2048]
ResNet101: [32, 64, 128, 256, 512, 1024, 2048]
ResNet152: [32, 64, 128, 256, 512, 1024, 2048]
VGG16: [ 64, 128, 256, 512]
EigenPlaces paper (ICCV 2023): https://arxiv.org/abs/2308.10832
CosPlace paper (CVPR 2022): https://arxiv.org/abs/2204.02287
"""
import torch
import torchvision.transforms as tvf
from ..utils.base_model import BaseModel
class EigenPlaces(BaseModel):
default_conf = {
"variant": "EigenPlaces",
"backbone": "ResNet101",
"fc_output_dim": 2048,
}
required_inputs = ["image"]
def _init(self, conf):
self.net = torch.hub.load(
"gmberton/" + conf["variant"],
"get_trained_model",
backbone=conf["backbone"],
fc_output_dim=conf["fc_output_dim"],
).eval()
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
self.norm_rgb = tvf.Normalize(mean=mean, std=std)
def _forward(self, data):
image = self.norm_rgb(data["image"])
desc = self.net(image)
return {
"global_descriptor": desc,
}
|